Table of Contents

  1. General information and hardware requirements

     1.1 Introduction
     1.2 Copyright notice and disclaimer
     1.3 What is the latest version, and where can I get it?
     1.4 What systems are supported?
     1.5 What cards are supported?
     1.6 When will my favorite (unsupported) card become supported?
     1.7 Mailing lists and other information sources

  2. Compilation and installation

     2.1 Prerequisites and kernel setup
     2.2 Kernel PCMCIA support
     2.3 Installation
     2.4 Startup options
        2.4.1 Card readers for desktop systems
     2.5 System resource settings
        2.5.1 PowerBook specific settings
     2.6 Notes about specific Linux distributions
        2.6.1 Debian
        2.6.2 Red Hat, Caldera, Mandrake
        2.6.3 Slackware
        2.6.4 SuSE

  3. Resolving installation and configuration problems

     3.1 Base PCMCIA kernel modules do not load
     3.2 Some client driver modules do not load
     3.3 ISA interrupt scan failures
     3.4 IO port scan failures
     3.5 Memory probe failures
     3.6 Failure to detect card insertions and removals
     3.7 Interrupt delivery problems
     3.8 System resource starvation
     3.9 Resource conflict only with two cards inserted
     3.10 Device configuration does not complete

  4. Usage and features

     4.1 Tools for configuring and monitoring PCMCIA devices
        4.1.1 The cardmgr configuration daemon
        4.1.2 The socket status file, stab
        4.1.3 The cardctl and cardinfo utilities
        4.1.4 Inserting and ejecting cards
        4.1.5 Card Services and Advanced Power Management
        4.1.6 Shutting down the PCMCIA system
     4.2 Overview of the PCMCIA configuration scripts
     4.3 PCMCIA network adapters
        4.3.1 Network device parameters
        4.3.2 Comments about specific cards
        4.3.3 Diagnosing problems with network adapters
     4.4 PCMCIA serial and modem devices
        4.4.1 Serial device parameters
        4.4.2 Comments about specific cards
        4.4.3 Diagnosing problems with serial devices
     4.5 PCMCIA parallel port devices
        4.5.1 Parallel device parameters
        4.5.2 Diagnosing problems with parallel port devices
     4.6 PCMCIA SCSI adapters
        4.6.1 SCSI device parameters
        4.6.2 Comments about specific cards
        4.6.3 Diagnosing problems with SCSI adapters
     4.7 PCMCIA memory cards
        4.7.1 Memory device parameters
        4.7.2 Using linear flash memory cards
     4.8 PCMCIA ATA/IDE card drives
        4.8.1 ATA/IDE fixed-disk device parameters
        4.8.2 Diagnosing problems with ATA/IDE adapters
     4.9 Multifunction cards

  5. Advanced topics

     5.1 Resource allocation for PCMCIA devices
     5.2 PCI interrupt configuration problems and solutions
        5.2.1 An overview of PCI interrupt routing issues
        5.2.2 CardBus bridge is not detected by the PCI BIOS
        5.2.3 PCI interrupt delivery problems
        5.2.4 No PCI interrupt assignment; valid routing table
        5.2.5 No PCI interrupt assignment; unknown interrupt router
        5.2.6 No PCI interrupt assignment; no routing table
     5.3 How can I have separate device setups for home and work?
     5.4 Booting from a PCMCIA device
        5.4.1 The pcinitrd helper script
        5.4.2 Creating an initrd boot floppy
        5.4.3 Installing an initrd image on a non-Linux drive

  6. Dealing with unsupported cards

     6.1 Configuring unrecognized cards
     6.2 Adding support for an NE2000-compatible ethernet card
     6.3 PCMCIA floppy interface cards

  7. Debugging tips and programming information

     7.1 Submitting useful problem reports
     7.2 Interpreting kernel trap reports
     7.3 Low level PCMCIA debugging aids
     7.4 /proc/bus/pccard
     7.5 Writing Card Services drivers for new cards
     7.6 Guidelines for PCMCIA client driver authors
     7.7 Guidelines for Linux distribution maintainers


  1.  General information and hardware requirements

  1.1.  Introduction

  Card Services for Linux is a complete PCMCIA or ``PC Card'' support
  package.  It includes a set of loadable kernel modules that implement
  a version of the Card Services applications program interface, a set
  of client drivers for specific cards, and a card manager daemon that
  can respond to card insertion and removal events, loading and
  unloading drivers on demand.  It supports ``hot swapping'' of most
  card types, so cards can be safely inserted and ejected at any time.

  This software is a work in progress.  It contains bugs, and should be
  used with caution.  I'll do my best to fix problems that are reported
  to me, but if you don't tell me, I may never know.  If you use this
  code, I hope you will send me your experiences, good or bad!

  If you have any suggestions for how this document could be improved,
  please let me know (

  1.2.  Copyright notice and disclaimer

  Copyright (c) 1998-2002 David A. Hinds

  This document may be reproduced or distributed in any form without my
  prior permission.  Modified versions of this document, including
  translations into other languages, may be freely distributed, provided
  that they are clearly identified as such, and this copyright is
  included intact.

  This document may be included in commercial distributions without my
  prior consent.  While it is not required, I would like to be informed
  of such usage.  If you intend to incorporate this document in a
  published work, please contact me to make sure you have the latest
  available version.

  This document is provided ``AS IS'', with no express or implied
  warranties.  Use the information in this document at your own risk.

  1.3.  What is the latest version, and where can I get it?

  The current major release of Card Services is version 3.2, and minor
  updates or bug fixes are numbered 3.2.1, 3.2.2, and so on.

  Source code for the latest version is available on the web at
  <>, as pcmcia-cs-3.2.?.tar.gz.  You
  may find more than one release number here.  It is up to you to decide
  which version is more appropriate, but the CHANGES file will summarize
  the most important differences.

  Pre-compiled drivers are included with current releases of essentially
  all major Linux distributions, including Slackware, Debian, Red Hat,
  Caldera, and SuSE, among others.  So generally there is no need to
  compile the drivers from scratch.

  1.4.  What systems are supported?

  This package should run on almost Intel-based Linux-capable laptop.
  It also runs on some Alpha, PowerPC, ARM, and MIPS platforms.  Most
  common socket controllers are supported.  Card docks for desktop
  systems should work as long as they use a supported controller, and
  are plugged directly into the ISA or PCI bus, as opposed to SCSI-to-
  PCMCIA or IDE-to-PCMCIA adapters.  The following controllers are
  recognized by the supplied socket drivers:

  ·  Cirrus Logic (now Basis Communications) PD6710, PD6720, PD6722,
     PD6729, PD6730, PD6832

  ·  ENE Technology CB1211, CB1225, CB1410, CB1420

  ·  Intel i82365sl B, C, and DF steps, 82092AA

  ·  O2Micro OZ6729, OZ6730, OZ6812, OZ6832, OZ6833, OZ6836, OZ6860,
     OZ6922, OZ6933, OZ6912

  ·  Omega Micro 82C365G, 82C092G

  ·  Ricoh RF5C296, RF5C396, RL5C465, RL5C466, RL5C475, RL5C476,
     RL5C477, RL5C478

  ·  SMC 34C90

  ·  Texas Instruments PCI1031, PCI1130, PCI1131, PCI1210, PCI1211,
     PCI1220, PCI1221, PCI1225, PCI1250A, PCI1251A, PCI1251B, PCI1410,
     PCI1410A, PCI1420, PCI1450, PCI1451A, PCI1510, PCI1520, PCI1620,
     PCI4410, PCI4410A, PCI4450, PCI4451, PCI4510, PCI4520, PCI7410,
     PCI7510, PCI7610
  ·  Toshiba ToPIC95, ToPIC97, ToPIC100 (experimental, incomplete)

  ·  Vadem VG465, VG468, VG469

  ·  VLSI Technologies 82C146, VCF94365

  ·  VIA VT83C469

  ·  Databook DB86082, DB86082A, DB86084, DB86084A, DB86072, DB86082B

  Other controllers that are register compatible with the Intel i82365sl
  will generally work, as well.

  Due to the rapid pace of technological change for laptop hardware, new
  controllers appear frequently, and there may be delays between when a
  new model appears on the market, and when driver support becomes

  Support for Toshiba's ToPIC bridges was hindered for a long time by a
  lack of sufficiently detailed technical documentation.  While some
  datasheets have been available, a few idiosyncracies of the ToPIC
  chips were not adequately explained.  Toshiba has given some direct
  technical help on some of these issues, and I think the major ones
  have been resolved.  However, with the introduction of kernel PCMCIA
  support in 2.4.* and later kernels, some new Toshiba bugs may have
  cropped up in the new socket driver code.

  The Motorola 6AHC05GA controller used in some Hyundai laptops is not
  supported.  The custom host controller in the HP Omnibook 600 is also

  1.5.  What cards are supported?

  The current release includes drivers for a variety of ethernet cards,
  a driver for modem and serial port cards, several SCSI adapter
  drivers, a driver for ATA/IDE drive cards, and memory card drivers
  that should support most SRAM cards and some flash cards.  The
  SUPPORTED.CARDS file included with each release of Card Services lists
  all cards that are known to work in at least one actual system.

  The likelihood that a card not on the supported list will work depends
  on the type of card.  Essentially all modems should work with the
  supplied driver.  Some network cards may work if they are OEM versions
  of supported cards.  Other types of IO cards (frame buffers, sound
  cards, etc) will not work until someone writes the appropriate

  1.6.  When will my favorite (unsupported) card become supported?

  Unfortunately, they usually don't pay me to write device drivers, so
  if you would like to have a driver for your favorite card, you are
  probably going to have to do at least some of the work.  Ideally, I'd
  like to work towards a model like the Linux kernel, where I would be
  responsible mainly for the ``core'' driver code and other authors
  would contribute and maintain client drivers for specific cards.  The
  SUPPORTED.CARDS file mentions some cards for which driver work is
  currently in progress.  I will try to help where I can, but be warned
  that debugging kernel device drivers by email is not particularly

  1.7.  Mailing lists and other information sources

  The Linux PCMCIA information page is at <http://pcmcia->, and has bug tracking, support and feature
  requests, and a variety of PCMCIA related message forums.  Users can
  request email notification of new responses to particular questions,
  or notification for all new messages in a given category.  I hope that
  this will become a useful repository of information, for questions
  that go beyond the scope of the HOWTO.

  The Linux Laptop Page at  <> has links
  to a vast number of sites that have information about configuring
  specific types of laptops for Linux.  There is also a searchable
  database of system configuration information, and pointers to a
  variety of laptop-related mailing lists.

  2.  Compilation and installation

  2.1.  Prerequisites and kernel setup

  Before starting, you should think about whether you really need to
  compile the PCMCIA package yourself.  All common Linux distributions
  come with pre-compiled driver packages.  Generally, you only need to
  install the drivers from scratch if you need a new feature of the
  current drivers, or if you've updated and/or reconfigured your kernel
  in a way that is incompatible with the drivers included with your
  Linux distribution.  While compiling the package is not technically
  difficult, it does require some general Linux familiarity.

  The following things should be installed on your system before you

  ·  A 2.0, 2.2, 2.4, or 2.6 series kernel source tree.

  ·  An appropriate set of module utilities.

  ·  (Optional) the ``XForms'' X11 user interface toolkit.

  You need to have a complete linux source tree for your kernel, not
  just an up-to-date kernel image.  The driver modules contain some
  references to kernel source files.  While you may want to build a new
  kernel to remove unnecessary drivers, installing PCMCIA does not
  require you to do so.

  Current ``stable'' kernel sources and patches are available from
  <>.  Current module
  utilities can be found in the same locations.

  In the Linux kernel source tree, the Documentation/Changes file
  describes the versions of all sorts of other system components that
  are required for that kernel release.  You may want to check through
  this and verify that your system is up to date, especially if you have
  updated your kernel.  If you are using a development kernel, be sure
  that you are using the right combination of shared libraries and
  module tools.

  On x86 based systems, if you plan to use 16-bit PC Card devices, you
  should also enable CONFIG_ISA, for recent kernels.  These cards behave
  much like ISA devices, and the PCMCIA drivers use CONFIG_ISA to judge
  whether a platform supports ISA bus interrupts.

  When configuring your kernel, if you plan on using a PCMCIA ethernet
  card, you should turn on networking support but turn off the normal
  Linux network card drivers, including the ``pocket and portable
  adapters''.  The PCMCIA network card drivers are all implemented as
  loadable modules.  Any drivers compiled into your kernel will only
  waste space.

  If you want to use SLIP, PPP, or PLIP, you do need to either configure
  your kernel with these enabled, or use the loadable module versions of
  these drivers.

  In order to use a PCMCIA token ring adapter, your kernel should be
  configured with ``Token Ring driver support'' (CONFIG_TR) enabled,
  though you should leave CONFIG_IBMTR off.

  If you want to use a PCMCIA IDE adapter, your kernel should be
  configured with CONFIG_BLK_DEV_IDE_PCMCIA enabled, for 2.0.*  kernels.
  Newer kernels do not require a special configuration setting.

  If you will be using a PCMCIA SCSI adapter, then enable CONFIG_SCSI
  when configuring your kernel.  Also, enable any top level drivers
  (SCSI disk, tape, cdrom, generic) that you expect to use.  All low-
  level drivers for particular host adapters should be disabled, as they
  will just take up space.

  This package includes an X-based card status utility called cardinfo.
  This utility is based on a freely distributed user interface toolkit
  called the XForms Library.  This library is available as a separate
  package with most Linux distributions.  If you would like to build
  cardinfo, you should install XForms and all the normal X header files
  and libraries before configuring the PCMCIA package.  This tool is
  completely optional.

  2.2.  Kernel PCMCIA support

  PCMCIA driver support is included in the 2.4 and later linux kernel
  trees.  While it shares most of the same code with the standalone
  PCMCIA driver package, there are some important differences.  The
  kernel PCMCIA support is also still evolving.

  The kernel PCMCIA code has the same functionality as the driver side
  of the pcmcia-cs package.  It does not eliminate the need to install
  the pcmcia-cs package, since it requires the same user tools (cardmgr,
  cardctl, /etc/pcmcia/* files).  The drivers in pcmcia-cs can still be
  built for 2.4 kernels, so you have a choice of using either the in-
  kernel PCMCIA drivers, or the drivers included in pcmcia-cs.  With 2.5
  and later kernels, the standalone drivers cannot be used.

  To use the kernel PCMCIA drivers, configure the kernel with
  x86 based systems, CONFIG_ISA should also be enabled.  The drivers can
  either be built into the kernel or built as modules.  PCMCIA client
  driver options are listed in their regular driver categories; thus,
  PCMCIA network drivers are in a submenu of network drivers, and PCMCIA
  serial drivers are in a submenu of character drivers.

  In the standalone pcmcia-cs drivers, the i82365 module supports both
  ISA-to-PCMCIA, PCI-to-PCMCIA, and PCI-to-CardBus bridges.  The CardBus
  socket driver in the 2.4 tree is the yenta_socket driver.  It is
  selected by the CONFIG_CARDBUS option.  In your PCMCIA startup
  options, this driver should be specified in place of the i82365
  driver.  The kernel version of the i82365 driver, selected by
  CONFIG_I82365, only supports ISA-to-PCMCIA bridges.  PCI-to-PCMCIA
  bridges that are not CardBus capable, like the Cirrus PD6729, are not
  supported at all by the kernel PCMCIA drivers.

  When compiling the standalone PCMCIA package, the Configure script
  decides whether or not to build any kernel modules by looking at the
  value of the CONFIG_PCMCIA option in your kernel configuration.  If
  CONFIG_PCMCIA is enabled, then by default, no driver components are
  built.  If CONFIG_PCMCIA is disabled, then all the modules will be
  built and installed.  It is safe to compile the user tools (cardmgr,
  cardctl, etc) in a PCMCIA package whose version number differs from
  the PCMCIA version number in the kernel source tree.  The kernel
  PCMCIA header files take precedence over the ones included in the
  PCMCIA package, if CONFIG_PCMCIA is enabled.

  2.3.  Installation

  Here is a synopsis of the installation process:

  ·  Unpack pcmcia-cs-3.2.?.tar.gz in /usr/src.

  ·  Run ``make config'' in the new pcmcia-cs-3.2.? directory.

  ·  Run ``make all'', then ``make install''.

  ·  Customize the startup script and the option files in /etc/pcmcia
     for your site, if needed.

  If you plan to install any contributed client drivers not included in
  the core PCMCIA distribution, unpack each of them in the top-level
  directory of the PCMCIA source tree.  Then follow the normal build
  instructions.  The extra drivers will be compiled and installed

  Running ``make config'' prompts for a few configuration options, and
  checks out your system to verify that it satisfies all prerequisites
  for installing PCMCIA support.  In most cases, you'll be able to just
  accept all the default configuration options.  Be sure to carefully
  check the output of this command in case there are problems.  The
  following options are available:

     Linux kernel source directory?
        This is the location of the source tree for the kernel you want
        to use with PCMCIA.  Often this is /usr/src/linux, but the
        default location depends on what Linux distribution you're using
        (or on where you've chosen to place your kernel source tree).

     Build 'trusting' versions of card utilities?
        Some of the support utilities (cardctl and cardinfo) can be
        compiled either in ``safe'' or ``trusting'' forms.  The ``safe''
        forms prevent non-root users from modifying card configurations.
        The ``trusting'' forms permit ordinary users to issue commands
        to suspend and resume cards, reset cards, and change the current
        configuration scheme.  The default is to build the safe forms.

     Include 32-bit (CardBus) card support?
        This option must be selected if you wish to use 32-bit CardBus
        cards.  It is not required for CardBus bridge support, if you
        only plan to use 16-bit PC Cards.

     Include PnP BIOS resource checking?
        This builds additional code into the PCMCIA core module to
        communicate with a system's PnP BIOS to obtain resource
        information for built-in ``motherboard'' devices (serial and
        parallel ports, sound, etc), to help avoid resource conflicts.
        If enabled, some extra resource files will be created under
        /proc/bus/pccard, and the lspnp and setpnp tools can be used to
        view and manipulate PnP BIOS devices.  However, this setting
        causes problems on some laptops and is not turned on by default.

     Module install directory?
        The directory that new kernel modules will be installed into.
        Normally this should be the subdirectory of /lib/modules that
        matches your kernel version.

     How to set kernel-specific options?
        There are a few kernel configuration options that affect the
        PCMCIA tools.  The configuration script can deduce these from
        the running kernel (the default and most common case).
        Alternatively, if you are compiling for installation on another
        machine, it can read the configuration from a kernel source
        tree, or each option can be set interactively.

  The Configure script can also be executed non-interactively, for
  automatic builds or to quickly reconfigure after a kernel update.
  Some additional less-frequently-used options can be only be set from
  the command line.  Running ``Configure --help'' lists all available

  Running ``make all'' followed by ``make install'' will build and then
  install the kernel modules and utility programs.  Kernel modules are
  installed under /lib/modules/<version>/pcmcia.  The cardmgr and
  cardctl programs are installed in /sbin.  If cardinfo is built, it is
  installed in /usr/bin/X11.

  Configuration files will be installed in the /etc/pcmcia directory.
  If you are installing over an older version, your old config scripts
  will be backed up before being replaced.  The saved scripts will be
  given an *.O extension.

  If you don't know what kind of host controller your system uses, you
  can use the pcic_probe utility in the cardmgr/ subdirectory to
  determine this.  There are several major types: the Databook TCIC-2
  type and the Intel i82365SL-compatible type.  With the kernel PCMCIA
  subsystem, Intel compatible controllers are further subdivided into
  ISA-bus 16-bit bridges, and PCI-based CardBus bridges.

  In a few cases, the pcic_probe command will be unable to determine
  your controller type automatically.  If you have a Halikan NBD 486
  system, it has a TCIC-2 controller at an unusual location: you'll need
  to edit rc.pcmcia to load the tcic module, and also set the PCIC_OPTS
  parameter to ``tcic_base=0x02c0''.

  On some old pre-PCI systems using Cirrus controllers, including the
  NEC Versa M, the BIOS puts the controller in a special suspended state
  at system startup time.  On these systems, the pcic_probe command will
  fail to find any known host controller.  If this happens, edit
  rc.pcmcia and set PCIC to i82365, and PCIC_OPTS to ``wakeup=1''.

  2.4.  Startup options

  The PCMCIA startup script recognizes several groups of startup
  options, set via environment variables.  Multiple options should be
  separated by spaces and enclosed in quotes.  Placement of startup
  options depends on the Linux distribution used.  They may be placed
  directly in the startup script, or they may be kept in a separate
  option file.  See the ``Notes about specific Linux distributions'' for
  specifics.  The following variables can be set:
        This variable specifies whether PCMCIA support should be started
        up, or not.  If it is set to anything other than ``yes'', then
        the startup script will be disabled.

        This identifies the PC Card Interface Controller driver module.
        There are several options: ``tcic'', ``i82365'', and (for the
        kernel PCMCIA subsystem) ``yenta_socket''.  Virtually all
        current controllers are in the ``i82365'' group for the
        standalone drivers, and ``yenta_socket'' for the kernel drivers.
        This is the only mandatory option setting.

        This specifies options for the PCIC module.  Some host
        controllers have optional features that may or may not be
        implemented in a particular system.  In some cases, it is
        impossible for the socket driver to detect if these features are
        implemented.  See the corresponding man page for a complete
        description of the available options.

        This specifies options for the pcmcia_core module, which
        implements the core PC Card driver services.  See ``man
        pcmcia_core'' for more information.

        This specifies options to be passed to the cardmgr daemon.  See
        ``man cardmgr'' for more information.

        If set, then the PC Card configuration scheme will be
        initialized to this at driver startup time.  See the ``Overview
        of the PCMCIA configuration scripts'' for a discussion of

  The low level socket drivers, tcic and i82365, have various bus timing
  parameters that may need to be adjusted for certain systems with
  unusual bus clocking.  Symptoms of timing problems can include card
  recognition problems, lock-ups under heavy loads, high error rates, or
  poor device performance.  Only certain host bridges have adjustable
  timing parameters: check the corresponding man page to see what
  options are available for your controller.  Here is a brief summary:

  ·  ISA-bus Cirrus controllers have numerous configurable timing
     parameters.  The most important seems to be the cmd_time flag,
     which determines the length of PCMCIA bus cycles.  Fast 486 systems
     (i.e., DX4-100) seem to often benefit from increasing this from 6
     (the default) to 12 or 16.

  ·  The Cirrus PD6729 PCI controller has the fast_pci flag, which
     should be set if the PCI bus speed is greater than 25 MHz.

  ·  For Vadem VG-468 controllers, the async_clock flag changes the
     relative clocking of PCMCIA bus and host bus cycles.  Setting this
     flag adds extra wait states to some operations.  However, I have
     yet to hear of a laptop that needs this.

  ·  The pcmcia_core module has the cis_speed parameter for changing the
     memory speed used for accessing a card's Card Information Structure
     (CIS).  On some systems, increasing this parameter (i.e., slowing
     down card accesses) may fix card recognition problems.

  ·  Another pcmcia_core parameter, io_speed, can be used to slow down
     accesses to IO cards.  It may help in certain cases with systems
     that have out-of-spec PCMCIA bus timing.

  ·  This is not a timing issue, but if you have more than one ISA-to-
     PCMCIA controller in your system or extra sockets in a laptop
     docking station, the i82365 module should be loaded with the
     extra_sockets parameter set to 1.  This should not be necessary for
     detection of PCI-to-PCMCIA or PCI-to-CardBus bridges.

  Here are some timing settings for a few old systems:

  ·  On the ARM Pentium-90 or Midwest Micro Soundbook Plus, use
     ``freq_bypass=1 cmd_time=8''.

  ·  On a Compaq Presario 1220, try ``setup_time=1''.

  ·  On a Midwest Micro Soundbook Elite, use ``cmd_time=12''.

  ·  On a Gateway Liberty, try ``cmd_time=16''.

  ·  On a Samsung SENS 810, use ``fast_pci=1''.

  2.4.1.  Card readers for desktop systems

  While almost all PCMCIA card readers and card docks work fine under
  Linux, some require special startup options because they do not behave
  exactly like laptop PCMCIA bridges.  PCI card readers, in particular,
  may handle interrupts differently.  Some of the following parameter
  settings are only available for the i82365 module in the standalone
  drivers; the kernel's yenta_socket driver is not configurable.

  ·  The Linksys ProConnect PCMRDWR and Antec DataChute ISA card readers
     are ``ISA Plug and Play'' devices.  To use these, you must first
     activate them with the Linux isapnp tools.  See the man pages for
     pnpdump and isapnp for more information.

  ·  For Chase CardPORT and Altec ISA card readers using the Cirrus
     PD6722 ISA-to-PCMCIA bridge, the i82365 driver should be loaded
     with a ``has_ring=0'' parameter to prevent irq 15 conflicts.

  ·  For Elan P-series PCI card readers based on the Cirrus PD6729 PCI-
     to-PCMCIA bridge chip, the i82365 driver requires a ``irq_mode=1''

  ·  For the Sycard PCChost1200 host adapter, the i82365 driver requires
     a ``p2cclk=1'' parameter.

  ·  For the Alex Electronics PCICBI host adapter based on the TI 1221
     bridge, the i82365 driver requires ``p2cclk=1 irq_mode=0'' as well
     as PCMCIA driver release 3.1.23 or later.

  ·  With SCM Microsystems SBP series PCI card readers (which are also
     being distributed with Lucent WaveLAN IEEE cards), and for the
     Synchrotech PCM-CR-PC2IF and PCM-CR-PC2IR, it is necessary to
     specify ``irq_mode=0'' for the i82365 module, to force use of PCI

  ·  For the ActionTec PC 750 card reader, and for the Antec Datachute
     PCI card reader, the i82365 driver requires a ``irq_list=0''
     parameter, to indicate that ISA interrupts are unavailable.

  ·  The PLX Technologies PCI9052 (also sold as the Linksys WDT11) is
     not a general purpose PCMCIA card reader at all: it is a PCI
     interface card for use with certain wireless adapters, that makes
     them look like ordinary PCI devices.  These devices are not

  2.5.  System resource settings

  Card Services should automatically avoid allocating IO ports and
  interrupts already in use by other standard devices.  It will also
  attempt to detect conflicts with unknown devices, but this is not
  completely reliable.  In some cases, you may need to explicitly
  exclude resources for a device in /etc/pcmcia/config.opts.

  Here are some resource settings for specific laptop types.  View this
  list with suspicion: it may give useful hints for solving problems,
  but it is inevitably out of date and certainly contains mistakes.
  Corrections and additions are welcome.

  ·  On the AMS SoundPro, exclude irq 10.

  ·  On some AMS TravelPro 5300 models, use memory 0xc8000-0xcffff.

  ·  On the BMX 486DX2-66, exclude irq 5, irq 9.

  ·  On the Chicony NB5, use memory 0xda000-0xdffff.

  ·  On the Compaq Presario 900Z, exclude port 0x3b0-0x3bb.

  ·  On the Compaq Presario 1020, exclude port 0x2f8-0x2ff, irq 3, irq

  ·  On the Compaq Presario 2120EA, exclude irq 10.

  ·  On the Dell Inspiron 7000, exclude irq 3, irq 5.

  ·  On the Dell Inspiron 8000, exclude port 0x800-0x8ff.

  ·  On the Fujitsu C series, exclude port 0x200-0x27f.

  ·  On the HP Omnibook 4000C, exclude port 0x300-0x30f.

  ·  On the HP Omnibook 4100, exclude port 0x220-0x22f.

  ·  On the IBM ThinkPad 380, and maybe the 385 and 600 series, exclude
     port 0x230-0x233, and irq 5.

  ·  On IBM ThinkPad 600 and 770 models with internal modems, exclude
     port 0x2f8-0x2ff.

  ·  On the IBM ThinkPad 600E and 770Z, change the high memory window to

  ·  On the Micron Millenia Transport, exclude irq 5, irq 9.

  ·  On the NEC Versa M, exclude irq 9, port 0x2e0-2ff.

  ·  On the NEC Versa P/75, exclude irq 5, irq 9.

  ·  On the NEC Versa S, exclude irq 9, irq 12.

  ·  On the NEC Versa 6000 series, exclude port 0x2f8-0x33f, irq 9, irq

  ·  On the NEC Versa SX, exclude port 0x300-0x31f.

  ·  On the ProStar 9200, Altima Virage, and Acquiline Hurricane
     DX4-100, exclude irq 5, port 0x330-0x35f.  Maybe use memory

  ·  On the Siemens Nixdorf SIMATIC PG 720C, use memory 0xc0000-0xcffff,
     port 0x300-0x3bf.

  ·  On the TI TravelMate 5000, use memory 0xd4000-0xdffff.

  ·  On the Toshiba Satellite 4030CDS, exclude irq 9.

  ·  On the Toshiba T4900 CT, exclude irq 5, port 0x2e0-0x2e8, port

  ·  On the Toshiba Tecra 8000, exclude irq 3, irq 5, irq 9.

  ·  On the Twinhead 5100, HP 4000, Sharp PC-8700 and PC-8900, exclude
     irq 9 (sound), irq 12.

  ·  On an MPC 800 Series, exclude irq 5, port 0x300-0x30f for the CD-

  2.5.1.  PowerBook specific settings

  On PowerPC based PowerBook systems, the default system resources in
  /etc/pcmcia/config.opts file are no good at all.  Replace all the IO
  port and window definitions with something like:

       include port 0x100-0x4ff, port 0x1000-0x17ff
       include memory 0x80000000-0x80ffffff

  2.6.  Notes about specific Linux distributions

  This section is incomplete.  Corrections and additions are welcome.

  2.6.1.  Debian

  Debian uses a System V boot script arrangement.  The PCMCIA startup
  script is installed as /etc/init.d/pcmcia.  New packages use
  /etc/default/pcmcia for startup options; older versions used
  /etc/pcmcia.conf for this purpose.  Debian's syslog configuration will
  place kernel messages in /var/log/messages and cardmgr messages in

  Debian distributes the PCMCIA system in two packages: the ``pcmcia-
  cs'' package contains cardmgr and other tools, man pages, and
  configuration scripts; and the ``pcmcia-modules'' package contains the
  kernel driver modules.

  Starting with 3.1.25, a clean PCMCIA install will identify Debian
  systems and create a special network.opts file that, in the absence of
  other network configuration settings, uses Debian's ifup and ifdown
  commands to configure a network card based on settings in

  2.6.2.  Red Hat, Caldera, Mandrake

  These distributions use a System V boot script organization.  The
  PCMCIA startup script is installed as /etc/rc.d/init.d/pcmcia, and
  boot options are kept in /etc/sysconfig/pcmcia.  Beware that
  installing the Red Hat package may install a default boot option file
  that has PCMCIA disabled.  To enable PCMCIA, the ``PCMCIA'' variable
  should be set to ``yes''.  Red Hat's default syslogd configuration
  will record all interesting messages in /var/log/messages.

  Red Hat's PCMCIA package contains a replacement for the network setup
  script, /etc/pcmcia/network, which meshes with the Red Hat linuxconf
  configuration system.  This is convenient for the case where just one
  network adapter is used, with one set of network parameters, but does
  not have the full flexibility of the regular PCMCIA network script.
  Compiling and installing a clean PCMCIA source distribution will
  overwrite the network script, breaking the link to the Red Hat tools.
  If you prefer using the Red Hat tools, either use only Red Hat RPM's,
  or replace /etc/pcmcia/network.opts with the following:

       if [ -f /etc/sysconfig/network-scripts/ifcfg-$2 ] ; then
           start_fn () {
               . /etc/sysconfig/network-scripts/ifcfg-$1
               if [ "$ONBOOT" = "yes" ] ; then /sbin/ifup $1 ; fi
           stop_fn () {
               /sbin/ifdown $1

  Starting with the 3.1.22 release, the PCMCIA installation script will
  automatically append a variant of this to the default network.opts
  file, so this problem should no longer be an issue.

  If you do use linuxconf (or netconf) to configure your network
  interface, leave the ``kernel module'', ``I/O port'', and ``irq''
  parameters blank.  Setting these parameters may interfere with proper
  operation of the PCMCIA subsystem.

  At boot time, when the Red Hat network subsystem starts up, it may say
  ``Delaying eth0 initialization'' and ``[FAILED]''.  This is actually
  not a failure: it means that this network interface will not be
  initialized until after the PCMCIA network device is configured.

  Red Hat bundles their slightly modified PCMCIA source distribution
  with their kernel sources, rather than as a separate source package.
  When preparing to build a new set of PCMCIA drivers, you will
  generally want to install Red Hat's kernel-source RPM (kernel-
  source-*.i386.rpm), and not the kernel SRPM (kernel-*.src.rpm).  The
  SRPM is tailored for building their kernel RPM files, which is not
  exactly what you want.  With Red Hat 7.0, the kernel-source RPM also
  includes a mis-configured PCMCIA source tree; if you want to use it,
  delete their PCMCIA config.out file and re-do "make config".

  2.6.3.  Slackware

  Slackware uses a BSD boot script arrangement.  The PCMCIA startup
  script is installed as /etc/rc.d/rc.pcmcia, and boot options are
  specified in rc.pcmcia itself.  The PCMCIA startup script is invoked
  from /etc/rc.d/rc.S.
  2.6.4.  SuSE

  SuSE uses a System V init script arrangement, with init scripts stored
  under /etc/init.d.  The PCMCIA startup script is installed as
  /etc/init.d/pcmcia, and startup options are kept in /etc/rc.config.
  Before release 7.0, init scripts were kept under /sbin/init.d.  In
  early SuSE releases (pre-5.3), the PCMCIA startup script was somewhat
  limited and did not allow PCMCIA startup variables to be overridden
  from the lilo boot prompt.

  SuSE 8.0 includes both the standalone PCMCIA modules, and the 2.4
  kernel PCMCIA subsystem modules.  A new variable, PCMCIA_SYSTEM, is
  available in /etc/sysconfig/pcmcia to choose between these.  It can be
  set to either ``kernel'' or ``external''.

  To look up current PCMCIA issues in SuSE's support database, go to

  3.  Resolving installation and configuration problems

  This section describes some of the most common failure modes for the
  PCMCIA subsystem.  Try to match your symptoms against the examples.
  This section only describes general failures that are not specific to
  a particular client driver or type of card.

  Before trying to diagnose a problem, you have to know where your
  system log is kept (see ``Notes about specific Linux distributions'').
  You should also be familiar with basic diagnostic tools like dmesg and
  lsmod.  Also, be aware that most driver components (including all the
  kernel modules) have their own individual man pages.

  In 3.1.15 and later releases, the debug-tools subdirectory of the
  PCMCIA source tree has a few scripts to help diagnose some of the most
  common configuration problems.  The test_setup script checks your
  PCMCIA installation for completeness.  The test_network and test_modem
  scripts will try to diagnose problems with PCMCIA network and modem
  cards.  These scripts can be particularly helpful if you are
  unfamiliar with Linux and are not sure how to approach a problem.

  Try to define your problem as narrowly as possible.  If you have
  several cards, try each card in isolation, and in different
  combinations.  Try cold Linux boots, versus warm boots from Windows.
  Compare booting with cards inserted, versus inserting cards after
  boot.  If you normally use your laptop docked, try it undocked.  And
  sometimes, two sockets will behave differently.

  For debugging problems in the device configuration scripts, it may be
  useful to start cardmgr with the ``-v'' option.  With a 3.1.23 or
  later PCMCIA package, this will cause most important script actions to
  be recorded in the system log.

  It is nearly impossible to debug driver problems encountered when
  attempting to install Linux via a PCMCIA device.  Even if you can
  identify the problem based on its symptoms, installation disks are
  difficult to modify, especially without access to a running Linux
  system.  Customization of installation disks is completely dependent
  on the choice of Linux distribution, and is beyond the scope of this
  document.  In general, the best course of action is to install Linux
  using some other means, obtain the latest drivers, and then debug the
  problem if it persists.

  3.1.  Base PCMCIA kernel modules do not load


  ·  Kernel version mismatch errors are reported when the PCMCIA startup
     script runs.

  ·  After startup, lsmod does not show any PCMCIA modules.

  ·  cardmgr reports ``no pcmcia driver in /proc/devices'' in the system

  Kernel modules contain version information that is checked against the
  current kernel when a module is loaded.  The type of checking depends
  on the setting of the CONFIG_MODVERSIONS kernel option.  If this is
  false, then the kernel version number is compiled into each module,
  and insmod checks this for a match with the running kernel.  If
  CONFIG_MODVERSIONS is true, then each symbol exported by the kernel is
  given a sort of checksum.  These codes are all compared against the
  corresponding codes compiled into a module.  The intent was for this
  to make modules less version-dependent, because the checksums would
  only change if a kernel interface changed, and would generally stay
  the same across minor kernel updates.  In practice, the checksums have
  turned out to be even more restrictive, because many kernel interfaces
  depend on compile-time kernel option settings.  Also, the checksums
  turned out to be an excessively pessimistic judge of compatibility.

  The practical upshot of this is that kernel modules are closely tied
  to both the kernel version, and the setting of many kernel
  configuration options.  Generally, a set of modules compiled for one
  2.2.19 kernel will not load against some other 2.2.19 kernel unless
  special care is taken to ensure that the two were built with similar
  configurations.  This makes distribution of precompiled kernel modules
  a tricky business.

  You have several options:

  ·  If you obtained precompiled drivers as part of a Linux
     distribution, verify that you are using an unmodified kernel as
     supplied with that distribution.  If you intend to use precompiled
     modules, you generally must stick with the corresponding kernel.

  ·  If you have reconfigured or upgraded your kernel, you will probably
     need to compile and install the PCMCIA package from scratch.  This
     is easily done if you already have the kernel source tree
     installed.  See ``Compilation and installation'' for detailed

  ·  In some cases, incompatibilities in other system components can
     prevent correct loading of kernel modules.  If you have upgraded
     your own kernel, pay attention to the ``minimal requirements'' for
     module utilities and binutils listed in the Documentation/Changes
     file in the kernel source code tree.

  3.2.  Some client driver modules do not load


  ·  The base modules (pcmcia_core, ds, i82365) load correctly.

  ·  Inserting a card gives a high beep + low beep pattern.

  ·  cardmgr reports version mismatch errors in the system log.

  Some of the driver modules require kernel services that may or may not
  be present, depending on kernel configuration.  For instance, the SCSI
  card drivers require that the kernel be configured with SCSI support,
  and the network drivers require a networking kernel.  If a kernel
  lacks a necessary feature, insmod may report undefined symbols and
  refuse to load a particular module. Note that insmod error messages do
  not distinguish between version mismatch errors and missing symbol


  ·  The serial client driver serial_cs requires the kernel serial
     driver to be enabled with CONFIG_SERIAL.  This driver may be built
     as a module.

  ·  Support for multiport serial cards or multifunction cards that
     include serial or modem devices requires CONFIG_SERIAL_SHARE_IRQ to
     be enabled.

  ·  The SCSI client drivers require that CONFIG_SCSI be enabled, along
     with the appropriate top level driver options (CONFIG_BLK_DEV_SD,
     CONFIG_BLK_DEV_SR, etc for 2.2 and later kernels).  These may be
     built as modules.

  ·  The network client drivers require that CONFIG_INET is enabled.
     Kernel networking support cannot be compiled as a module.

  ·  The token-ring client requires that the kernel be compiled with
     CONFIG_TR enabled.

  There are two ways to proceed:

  ·  Rebuild your kernel with the necessary features enabled.

  ·  If the features have been compiled as modules, then modify
     /etc/pcmcia/config to preload these modules.

  The /etc/pcmcia/config file can specify that additional modules need
  to be loaded for a particular client.  For example, for the serial
  driver, one would use:

       device "serial_cs"
         class "serial" module "misc/serial", "serial_cs"

  Module paths are specified relative to the top-level module directory
  for the current kernel version; if no relative path is given, then the
  path defaults to the pcmcia subdirectory.

  3.3.  ISA interrupt scan failures


  ·  The system locks up when the PCMCIA drivers are loaded, even with
     no cards present.

  ·  The system log shows a successful host controller probe just before
     the lock-up, but does not show interrupt probe results.
  After identifying the host controller type, the socket driver probes
  for free ISA bus interrupts.  The probe involves programming the
  controller for each apparently free interrupt, then generating a
  ``soft'' interrupt, to see if the interrupt can be detected correctly.
  In some cases, probing a particular interrupt can interfere with
  another system device.

  The reason for the probe is to identify interrupts which appear to be
  free (i.e., are not reserved by any other Linux device driver), yet
  are either not physically wired to the host controller, or are
  connected to another device that does not have a driver.

  In the system log, a successful probe might look like:

       Intel PCIC probe:
         TI 1130 CardBus at mem 0x10211000, 2 sockets
         ISA irqs (scanned) = 5,7,9,10 status change on irq 10

  There are two ways to proceed:

  ·  The ISA interrupt probe can be restricted to a list of interrupts
     using the irq_list parameter for the socket drivers.  For example,
     ``irq_list=5,9,10'' would limit the scan to three interrupts.  All
     16-bit PCMCIA devices will be restricted to using these interrupts
     (assuming they pass the probe).  You may need to use trial and
     error to find out which interrupts can be safely probed.

  ·  The interrupt probe can be disabled entirely by loading the socket
     driver with the ``do_scan=0'' option.  In this case, a default
     interrupt list will be used, which just avoids interrupts already
     allocated for other devices.

  In either case, the probe options can be specified using the PCIC_OPTS
  definition in the PCMCIA startup script, for example:


  It should be noted that /proc/interrupts is completely useless when it
  comes to diagnosing interrupt probe problems.  The probe is sensible
  enough to never attempt to use an interrupt that is already in use by
  another Linux driver.  So, the PCMCIA drivers are already using all
  the information in /proc/interrupts.  Depending on system design, an
  inactive device can still occupy an interrupt and cause trouble if it
  is probed for PCMCIA.

  3.4.  IO port scan failures


  ·  The system locks up when cardmgr is first started.  For 3.1.24, the
     lockup happens even with no cards present; for 3.1.25, a card must
     be inserted.

  ·  The system log shows a successful host controller probe, including
     interrupt probe results, but does not show IO probe results.

  ·  In some cases, the IO probe will succeed, but report large numbers
     of random exclusions.

  When cardmgr processes IO port ranges listed in
  /etc/pcmcia/config.opts, the kernel probes these ranges to detect
  latent devices that occupy IO space but are not associated with a
  Linux driver.  The probe is read-only, but in rare cases, reading from
  a device may interfere with an important system function, resulting in
  a lock-up.

  Your system user's guide may include a map of system devices, showing
  their IO and memory ranges.  These can be explicitly excluded in

  Alternatively, if the probe is unreliable on your system, it can be
  disabled by setting CORE_OPTS to ``probe_io=0''.  In this case, you
  should be very careful to specify only genuinely available ranges of
  ports in config.opts, instead of using the default settings.

  3.5.  Memory probe failures


  ·  The core drivers load correctly when no cards are present, with no
     errors in the system log.

  ·  The system freezes and/or reboots as soon as any card is inserted,
     before any beeps are heard.

  Or alternately:

  ·  All card insertions generate a high beep followed by a low beep.

  ·  All cards are identified as ``anonymous memory cards''.

  ·  The system log reports that various memory ranges have been

  The core modules perform a memory scan at the time of first 16-bit
  card insertion.  This scan can potentially interfere with other memory
  mapped devices.  Also, pre-3.0.0 driver packages perform a more
  aggressive scan than more recent drivers.  The memory window is
  defined in /etc/pcmcia/config.opts.  The default window is large, so
  it may help to restrict the scan to a narrower range.  Reasonable
  ranges to try include 0xd0000-0xdffff, 0xc0000-0xcffff,
  0xc8000-0xcffff, or 0xd8000-0xdffff.

  If you have DOS or Windows PCMCIA drivers, you may be able to deduce
  what memory region those drivers use.  Note that DOS memory addresses
  are often specified in ``segment'' form, which leaves off the final
  hex digit (so an absolute address of 0xd0000 might be given as
  0xd000).  Be sure to add the extra digit back when making changes to

  Changing BIOS settings affecting how devices are mapped can sometimes
  be useful.  Try changing settings for BIOS shadowing, or "Plug and
  Play OS support".

  In unusual cases, a memory probe failure can indicate a timing
  register setup problem with the host controller.  See the ``Startup
  options'' section for information about dealing with common timing
  problems.  This really only applies to ISA-to-PCMCIA bus bridges.

  ·  cs: warning: no high memory space available!

  CardBus bridges can allocate memory windows outside of the 640KB-1MB
  ``memory hole'' in the ISA bus architecture.  It is generally a good
  idea to configure CardBus bridges to use high memory windows, because
  these are unlikely to conflict with other devices.  Also, CardBus
  cards may require large memory windows, which may be difficult or
  impossible to fit into low memory.  Card Services will preferentially
  allocate windows in high memory for CardBus bridges, if both low and
  high memory windows are defined in config.opts.  The default
  config.opts includes several candidate high memory windows, one of
  which will work in most cases.

  3.6.  Failure to detect card insertions and removals


  ·  Cards are detected and configured properly if present at boot time.

  ·  The drivers do not respond to insertion and removal events, either
     by recording events in the system log, or by beeping.

  In most cases, the socket driver (i82365 or tcic) will automatically
  probe and select an appropriate interrupt to signal card status
  changes.  The automatic interrupt probe doesn't work on some Intel-
  compatible controllers, including Cirrus chips and the chips used in
  some IBM ThinkPads.  If a device is inactive at probe time, its
  interrupt may also appear to be available.  In these cases, the socket
  driver may pick an interrupt that is used by another device.

  With the i82365 and tcic drivers, the irq_list option can be used to
  limit the interrupts that will be tested.  This list limits the set of
  interrupts that can be used by PCMCIA cards as well as for monitoring
  card status changes.  The cs_irq option can also be used to explicitly
  set the interrupt to be used for monitoring card status changes.

  If you can't find an interrupt number that works, there is also a
  polled status mode: both i82365 and tcic will accept a
  poll_interval=100 option, to poll for card status changes once per
  second.  This option should also be used if your system has a shortage
  of interrupts available for use by PCMCIA cards.  Especially for
  systems with more than one host controller, there is little point in
  dedicating interrupts for monitoring card status changes.

  All these options should be set in the PCIC_OPTS= line in either
  /etc/rc.d/rc.pcmcia or /etc/sysconfig/pcmcia, depending on your site

  3.7.  Interrupt delivery problems


  ·  Cards appear to be configured successfully, but don't work.

  ·  Serial and modem cards may respond very sluggishly.

  ·  Network cards may report ``interrupt(s) dropped'', and/or transmit

  The most simple interrupt delivery problems are due to conflicts with
  other system devices.  These can generally be resolved by excluding
  problem interrupts in /etc/pcmcia/config.opts.  To test, just exclude
  interrupts one by one until either the problem is fixed or you run out
  of interrupts.  If no interrupts work, then device conflicts are
  probably not the problem.

  For CardBus bridges, a variety of other interrupt delivery issues may
  come into play.  For a complete discussion, see ``PCI interrupt
  delivery problems''.

  3.8.  System resource starvation


  ·  When a card is inserted, it is identified correctly but cannot be
     configured (high/low beep pattern).

  ·  One of the following messages will appear in the system log:

       RequestIO: Resource in use
       RequestIRQ: Resource in use
       RequestWindow: Resource in use
       GetNextTuple: No more items
       could not allocate nn IO ports for CardBus socket n
       could not allocate nnK memory for CardBus socket n
       could not allocate interrupt for CardBus socket n

  Interrupt starvation often indicates a problem with the interrupt
  probe (see ``Interrupt scan failures'').  In some cases, the probe
  will seem to work, but only report one or two available interrupts.
  Check your system log to see if the scan results look sensible.
  Disabling the probe and selecting interrupts manually should help.

  If the interrupt probe is not working properly, the socket driver may
  allocate an interrupt for monitoring card insertions, even when
  interrupts are too scarce for this to be a good idea.  You can switch
  the controller to polled mode by setting PCIC_OPTS to
  ``poll_interval=100'.  Or, if you have a CardBus controller and an
  older version of the PCMCIA drivers, try ``pci_csc=1'', which selects
  a PCI interrupt (if available) for card status changes.

  In some cases, kernel misconfiguration can also produce an apparent
  interrupt shortage.  On 2.4 and later kernels, if CONFIG_ISA is not
  enabled, then the PCMCIA drivers will assume no ISA bus interrupts are

  IO port starvation is fairly uncommon, but sometimes happens with
  cards that require large, contiguous, aligned regions of IO port
  space, or that only recognize a few specific IO port positions.  The
  default IO port ranges in /etc/pcmcia/config.opts are normally
  sufficient, but may be extended.  If this is the problem, try
  uncommenting the ``include port 0x1000-0x17ff'' line in config.opts.
  In rare cases, starvation may indicate that the IO port probe failed
  (see ``IO port scan failures'').

  Memory starvation is also uncommon with the default memory window
  settings in config.opts.  CardBus cards may require larger memory
  regions than typical 16-bit cards.  Since CardBus memory windows can
  be mapped anywhere in the host's PCI address space (rather than just
  in the 640K-1MB ``hole'' in PC systems), it is helpful to specify
  large memory windows in high memory, such as 0xa0000000-0xa0ffffff.

  3.9.  Resource conflict only with two cards inserted


  ·  Two cards each work fine when used separately.

  ·  When both cards are inserted, only one works.

  This usually indicates a resource conflict with a system device that
  Linux does not know about.  PCMCIA devices are dynamically configured,
  so, for example, interrupts are allocated as needed, rather than
  specifically assigned to particular cards or sockets.  Given a list of
  resources that appear to be available, cards are assigned resources in
  the order they are configured.  In this case, the card configured last
  is being assigned a resource that in fact is not free.

  Check the system log to see what resources are used by the non-working
  card.  Exclude these in /etc/pcmcia/config.opts, and restart the
  cardmgr daemon to reload the resource database.

  3.10.  Device configuration does not complete


  ·  When a card is inserted, exactly one high beep is heard.

  ·  Subsequent card insertions and removals may be ignored.

  This indicates that the card was identified successfully, however,
  cardmgr has been unable to complete the configuration process for some
  reason.  The most likely reason is that a step in the card setup
  script has blocked.  A good example would be the network script
  blocking if a network card is inserted with no actual network hookup

  To pinpoint the problem, you can manually run a setup script to see
  where it is blocking.  The scripts are in the /etc/pcmcia directory.
  They take two parameters: a device name, and an action.  The cardmgr
  daemon records the configuration commands in the system log.  For
  example, if the system log shows that the command ``./network start
  eth0'' was the last command executed by cardmgr, the following command
  would trace the script:

       sh -x /etc/pcmcia/network start eth0

  4.  Usage and features

  4.1.  Tools for configuring and monitoring PCMCIA devices

  If the modules are all loaded correctly, the output of the lsmod
  command should look like the following, when no cards are inserted:

       Module                  Size  Used by
       ds                      5640   2
       i82365                 15452   2
       pcmcia_core            30012   3  [ds i82365]

  The system log should also include output from the socket driver
  describing the host controller(s) found and the number of sockets

  4.1.1.  The cardmgr configuration daemon

  The cardmgr daemon is responsible for monitoring PCMCIA sockets,
  loading client drivers when needed, and running user-level scripts in
  response to card insertions and removals.  It records its actions in
  the system log, but also uses beeps to signal card status changes.
  The tones of the beeps indicate success or failure of particular
  configuration steps.  Two high beeps indicate that a card was
  identified and configured successfully.  A high beep followed by a low
  beep indicates that a card was identified, but could not be configured
  for some reason.  One low beep indicates that a card could not be

  The cardmgr daemon configures cards based on a database of known card
  types kept in /etc/pcmcia/config.  This file describes the various
  client drivers, then describes how to identify various cards, and
  which driver(s) belong with which cards.  The format of this file is
  described in the pcmcia(5) man page.

  4.1.2.  The socket status file, stab

  Cardmgr records device information for each socket in
  /var/lib/pcmcia/stab.  Here is a sample stab listing:

       Socket 0: Adaptec APA-1460 SlimSCSI
       0       scsi    aha152x_cs      0       sda     8       0
       0       scsi    aha152x_cs      1       scd0    11      0
       Socket 1: Serial or Modem Card
       1       serial  serial_cs       0       ttyS1   5       65

  For the lines describing devices, the first field is the socket, the
  second is the device class, the third is the driver name, the fourth
  is used to number multiple devices associated with the same driver,
  the fifth is the device name, and the final two fields are the major
  and minor device numbers for this device (if applicable).  See the
  stab man page for more info.

  In 2.4 and later kernels, hot plut PCI drivers for CardBus cards are
  not managed by cardmgr; they are managed by the hotplug subsystem.
  See  <> for information about this
  facility.  When cardmgr sees a card that is owned by a hot plug PCI
  driver, it will ignore that card.  There will be one beep when these
  cards are inserted or ejected, but they will be identified only as a
  ``CardBus hotplug device'' in the system log and stab file.

  4.1.3.  The cardctl and cardinfo utilities

  The cardctl command can be used to check the status of a socket, or to
  see how it is configured.  It can also be used to alter the
  configuration status of a card.  Here is an example of the output of
  the ``cardctl config'' command:

       Socket 0:
         not configured
       Socket 1:
         Vcc = 5.0, Vpp1 = 0.0, Vpp2 = 0.0
         Card type is memory and I/O
         IRQ 3 is dynamic shared, level mode, enabled
         Speaker output is enabled
         Function 0:
           Config register base = 0x0800
             Option = 0x63, status = 0x08
           I/O window 1: 0x0280 to 0x02bf, auto sized
           I/O window 2: 0x02f8 to 0x02ff, 8 bit

  Or ``cardctl ident'', to get card identification information:

       Socket 0:
         no product info available
       Socket 1:
         product info: "LINKSYS", "PCMLM336", "A", "0040052D6400"
         manfid: 0x0143, 0xc0ab
         function: 0 (multifunction)

  The ``cardctl suspend'' and ``cardctl resume'' commands can be used to
  shut down a card without unloading its associated drivers.  The
  ``cardctl reset'' command attempts to reset and reconfigure a card.
  ``cardctl insert'' and ``cardctl eject'' mimic the actions performed
  when a card is physically inserted or ejected, including loading or
  unloading drivers, and configuring or shutting down devices.

  If you are running X, the cardinfo utility produces a graphical
  display showing the current status of all PCMCIA sockets, similar in
  content to ``cardctl config''.  It also provides a graphical interface
  to most other cardctl functions.

  4.1.4.  Inserting and ejecting cards

  In theory, you can insert and remove PCMCIA cards at any time.
  However, it is a good idea not to eject a card that is currently being
  used by an application program.  Kernels older than 1.1.77 would often
  lock up when serial/modem cards were ejected, but this should be fixed

  Some card types cannot be safely hot ejected.  Specifically, ATA/IDE
  and SCSI interface cards are not hot-swap-safe.  This is unlikely to
  be fixed, because a complete solution would require significant
  changes to the Linux block device model.  Also, it is generally not
  safe to hot eject CardBus cards of any type.  This is likely to
  improve gradually as hot swap bugs in the CardBus drivers are found
  and fixed.  For these card types (IDE, SCSI, CardBus), it is
  recommended that you always use ``cardctl eject'' before ejecting.

  4.1.5.  Card Services and Advanced Power Management

  Card Services can be compiled with support for APM (Advanced Power
  Management) if you've configured your kernel with APM support.  The
  APM kernel driver is maintained by Stephen Rothwell
  (  The apmd daemon is maintained by
  Avery Pennarun (, with more information
  available at <>.  The PCMCIA
  modules will automatically be configured for APM if a compatible
  version is detected on your system.

  Whether or not APM is configured, you can use ``cardctl suspend''
  before suspending your laptop, and ``cardctl resume'' after resuming,
  to cleanly shut down and restart your PCMCIA cards.  This will not
  work with a modem that is in use, because the serial driver isn't able
  to save and restore the modem operating parameters.

  APM seems to be unstable on some systems.  If you experience trouble
  with APM and PCMCIA on your system, try to narrow down the problem to
  one package or the other before reporting a bug.

  Some drivers, notably the PCMCIA SCSI drivers, cannot recover from a
  suspend/resume cycle.  When using a PCMCIA SCSI card, always use
  ``cardctl eject'' prior to suspending the system.

  4.1.6.  Shutting down the PCMCIA system

  To unload the entire PCMCIA package, invoke rc.pcmcia with:

       /etc/rc.d/rc.pcmcia stop

  This script will take several seconds to run, to give all client
  drivers time to shut down gracefully.  If a device is currently in
  use, the shutdown will be incomplete, and some kernel modules may not
  be unloaded.  To avoid this, use ``cardctl eject'' to shut down all
  sockets before invoking rc.pcmcia.  The exit status of the cardctl
  command will indicate if any sockets could not be shut down.

  4.2.  Overview of the PCMCIA configuration scripts

  The following information applies to cards that are managed by
  cardmgr.  In 2.4 and later kernels, if the kernel PCMCIA subsystem is
  active, then CardBus cards are managed by the hotplug subsystem and
  the PCMCIA scripts are not used.

  Each PCMCIA device has an associated ``class'' that describes how it
  should be configured and managed.  Classes are associated with device
  drivers in /etc/pcmcia/config.  There are currently five IO device
  classes (network, SCSI, cdrom, fixed disk, and serial) and two memory
  device classes (memory and FTL).  For each class, there are two
  scripts in /etc/pcmcia: a main configuration script (i.e.,
  /etc/pcmcia/scsi for SCSI devices), and an options script (i.e.,
  /etc/pcmcia/scsi.opts).  The main script for a device will be invoked
  to configure that device when a card is inserted, and to shut down the
  device when the card is removed.  For cards with several associated
  devices, the script will be invoked for each device.

  The config scripts start by extracting some information about a device
  from the stab file.  Each script constructs a ``device address'', that
  uniquely describes the device it has been asked to configure, in the
  ADDRESS shell variable.  This is passed to the *.opts script, which
  should return information about how a device at this address should be
  configured.  For some devices, the device address is just the socket
  number.  For others, it includes extra information that may be useful
  in deciding how to configure the device.  For example, network devices
  pass their hardware ethernet address as part of the device address, so
  the network.opts script could use this to select from several
  different configurations.

  The first part of all device addresses is the current PCMCIA
  ``scheme''.  This parameter is used to support multiple sets of device
  configurations based on a single external user-specified variable.
  One use of schemes would be to have a ``home'' scheme, and a ``work''
  scheme, which would include different sets of network configuration
  parameters.  The current scheme is selected using the ``cardctl
  scheme'' command.  The default if no scheme is set is ``default''.

  There are a few additional shell variables that can be used in *.opts
  files in addition to ADDRESS:

        These correspond to individual fields from one line in the stab
        file.  See its man page for details.

        These are equivalent to the output of ``cardctl info'' and give
        more detailed card identification information.

  As the *.opts files are just shell scripts, it is not required that
  they follow the form of the examples, which just return settings based

  As a general rule, when configuring Linux for a laptop, PCMCIA devices
  should only be configured from the PCMCIA device scripts.  Do not try
  to configure a PCMCIA device the same way you would configure a
  permanently attached device.  However, some Linux distributions
  provide PCMCIA packages that are hooked into those distributions' own
  device configuration tools.  In that case, some of the following
  sections may not apply; ideally, this will be documented by the
  distribution maintainers.

  4.3.  PCMCIA network adapters

  Linux ethernet-type network interfaces normally have names like eth0,
  eth1, and so on.  Token-ring adapters are handled similarly, however
  they are named tr0, tr1, and so on.  The ifconfig command is used to
  view or modify the state of a network interface.  A peculiarity of
  Linux is that network interfaces do not have corresponding device
  files under /dev, so do not be surprised when you do not find them.

  When an ethernet card is detected, it will be assigned the first free
  interface name, which will normally be eth0.  Cardmgr will run the
  /etc/pcmcia/network script to configure the interface, which normally
  reads network settings from /etc/pcmcia/network.opts.  The network and
  network.opts scripts will be executed only when your ethernet card is
  actually present.  If your system has an automatic network
  configuration facility, it may or may not be PCMCIA-aware.  Consult
  the documentation of your Linux distribution and the ``Notes about
  specific Linux distributions''  to determine if PCMCIA network devices
  should be configured with the automatic tools, or by editing

  The device address passed to network.opts consists of four comma-
  separated fields: the scheme, the socket number, the device instance,
  and the card's hardware ethernet address.  The device instance is used
  to number devices for cards that have several network interfaces, so
  it will usually be 0.  If you have several network cards used for
  different purposes, one option would be to configure the cards based
  on socket position, as in:

       case "$ADDRESS" in
           # definitions for network card in socket 0
           # definitions for network card in socket 1

  Alternatively, they could be configured using their hardware
  addresses, as in:

       case "$ADDRESS" in
           # definitions for a D-Link card
           # definitions for an IBM card

  4.3.1.  Network device parameters

  The following parameters can be defined in network.opts:

        Specifies the ethernet transceiver type, for certain 16-bit
        cards that do not autodetect.  See ``man ifport'' and ``man mii-
        tool'' for more information.

        A boolean (y/n) value: indicates if the host's IP address and
        routing information should be obtained using the BOOTP protocol,
        with bootpc or pump.

        A boolean (y/n) value: indicates if the host's IP address and
        routing information should be obtained from a DHCP server.  The
        network script first looks for dhcpcd, then dhclient, then pump.

        Specifies a hostname to be passed to dhcpcd or pump, for
        inclusion in DHCP messages.
        The IP address for this interface.

        Basic network parameters: see the networking HOWTO for more

        The IP address of a gateway for this host's subnet.  Packets
        with destinations outside this subnet will be routed to this

        The local network domain name for this host, to be used in
        creating /etc/resolv.conf.

        A search list for host name lookup, to be added to
        /etc/resolv.conf.  DOMAIN and SEARCH are mutually exclusive: see
        ``man resolver'' for more information.

     DNS_1, DNS_2, DNS_3
        Host names or IP addresses for nameservers for this interface,
        to be added to /etc/resolv.conf

        A space-separated list of NFS mount points to be mounted for
        this interface.

        For IPX networks: the frame type and network number, passed to
        the ipx_interface command.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        set, then ``cardctl eject'' will shut down a device even if
        there are open connections. If NO_FUSER is set, then the script
        will not check for busy NFS mounts or kill processes using those

  For example:

       case "$ADDRESS" in

  To automatically mount and unmount NFS filesystems, first add all
  these filesystems to /etc/fstab, but include noauto in the mount
  options.  In network.opts, list the filesystem mount points in the
  MOUNTS variable.  It is especially important to use either cardctl or
  cardinfo to shut down a network card when NFS mounts are active.  It
  is not possible to cleanly unmount NFS filesystems if a network card
  is simply ejected without warning.

  In addition to the usual network configuration parameters, the
  network.opts script can specify extra actions to be taken after an
  interface is configured, or before an interface is shut down.  If
  network.opts defines a shell function called start_fn, it will be
  invoked by the network script after the interface is configured, and
  the interface name will be passed to the function as its first (and
  only) argument.  Similarly, if it is defined, stop_fn will be invoked
  before shutting down an interface.

  The transceiver type for some (mostly old) cards must be manually be
  selected using the IF_PORT setting.  This can either be a numeric
  value, or a keyword identifying the transceiver type.  All the network
  drivers default to either autodetect the interface if possible, or
  10baseT otherwise.  The ifport command can be used to check or set the
  current transceiver type.  For example:

       # ifport eth0 10base2
       # ifport eth0
       eth0    2 (10base2)

  Most modern 10/100baseT cards use a ``media independent interface''
  (MII) transceiver that automatically selects line speed and duplex
  setting.  The mii-tool command can be used to monitor and control the
  behavior of the MII interface.

  4.3.2.  Comments about specific cards

  ·  With IBM CCAE and Socket EA cards, the transceiver type (10base2,
     10baseT, AUI) needs to be set when the network device is
     configured.  Make sure that the transceiver type reported in the
     system log matches your connection.

  ·  The Farallon EtherWave is actually based on the 3Com 3c589, with a
     special transceiver.  Though the EtherWave uses 10baseT-style
     connections, its transceiver requires that the 3c589 be configured
     in 10base2 mode.

  ·  If you have trouble with an IBM CCAE, NE4100, Thomas Conrad, or
     Kingston adapter, try increasing the memory access time with the
     mem_speed=# option to the pcnet_cs module.  An example of how to do
     this is given in the standard config.opts file.  Try speeds of up
     to 1000 (in nanoseconds).

  ·  For the New Media Ethernet adapter, on some systems, it may be
     necessary to increase the IO port access time with the io_speed=#
     option when the pcmcia_core module is loaded.  Edit CORE_OPTS in
     the startup script  to set this option.

  ·  The multicast support in the New Media Ethernet driver is
     incomplete.  The latest driver will function with multicast
     kernels, but will ignore multicast packets.  Promiscuous mode
     should work properly.

  ·  The driver used by the IBM and 3Com token ring adapters seems to
     behave very badly if the cards are not connected to a ring when
     they get initialized.  Always connect these cards to the net before
     they are powered up.  If ifconfig reports the hardware address as
     all 0's, this is likely to be due to a memory window configuration

  ·  Some Linksys, D-Link, and IC-Card 10baseT/10base2 cards have a
     unique way of selecting the transceiver type that isn't handled by
     the Linux drivers.  One workaround is to boot DOS and use the
     vendor-supplied utility to select the transceiver, then warm boot
     Linux.  Alternatively, a Linux utility to perform this function is
     available at  <http://pcmcia->.

  ·  16-bit PCMCIA cards have a maximum performance of 1.5-2 MB/sec.
     That means that any 16-bit 100baseT card (i.e., any card that uses
     the pcnet_cs, 3c574_cs, smc91c92_cs, or xirc2ps_cs driver) will
     never achieve full 100baseT throughput.  Only CardBus network
     adapters can fully exploit 100baseT data rates.

  ·  For WaveLAN wireless network adapters, Jean Tourrilhes
     ( has put together a wireless HOWTO at

  4.3.3.  Diagnosing problems with network adapters

  ·  In 3.1.15 and later PCMCIA releases, the test_network script in the
     debug-tools subdirectory of the PCMCIA source tree will spot some
     common problems.

  ·  Is your card recognized as an ethernet card?  Check the system log
     and make sure that cardmgr identifies the card correctly and starts
     up one of the network drivers.  If it doesn't, your card might
     still be usable if it is compatible with a supported card.  This
     will be most easily done if the card claims to be ``NE2000

  ·  Is the card configured properly?  If you are using a supported
     card, and it was recognized by cardmgr, but still doesn't work,
     there might be an interrupt or port conflict with another device.
     Find out what resources the card is using (from the system log),
     and try excluding these in /etc/pcmcia/config.opts to force the
     card to use something different.

  ·  If your card seems to be configured properly, but sometimes locks
     up, particularly under high load, you may need to try changing your
     socket driver timing parameters.  See the ``Startup options''
     section for more information.

  ·  If you get ``Network is unreachable'' messages when you try to
     access the network, then the routing information specified in
     /etc/pcmcia/network.opts is incorrect.  This exact message is an
     absolutely foolproof indication of a routing error.  On the other
     hand, mis-configured cards will usually fail silently.

  ·  If you are trying to use DHCP to configure your network interface,
     try testing things with a static IP address instead, to rule out a
     DHCP configuration problem.

  ·  To diagnose problems in /etc/pcmcia/network.opts, start by trying
     to ping other systems on the same subnet using their IP addresses.
     Then try to ping your gateway, and then machines on other subnets.
     Ping machines by name only after trying these simpler tests.

  ·  Make sure your problem is really a PCMCIA one.  It may help to see
     see if the card works under DOS with the vendor's drivers.  Double
     check your modifications to the /etc/pcmcia/network.opts script.
     Make sure your drop cable, ``T'' jack, terminator, etc are working.

  ·  Use real network cables.  Don't even think about using that old
     phone cord you found in your basement.  And this means Category 5
     cable for 100baseT.  It really matters.

  4.4.  PCMCIA serial and modem devices

  Linux serial devices are accessed via the /dev/ttyS* and /dev/cua*
  special device files.  In pre-2.2 kernels, the ttyS* devices were for
  incoming connections, such as directly connected terminals, and the
  cua* devices were for outgoing connections, such as modems.  Use of
  cua* devices is deprecated in current kernels, and ttyS* can be used
  for all applications.  The configuration of a serial device can be
  examined and modified with the setserial command.

  When a serial or modem card is detected, it will be assigned to the
  first available serial device slot.  This will usually be /dev/ttyS1
  (cua1) or /dev/ttyS2 (cua2), depending on the number of built-in
  serial ports.  The ttyS* device is the one reported in stab.  The
  default serial device option script, /etc/pcmcia/serial.opts, will
  link the device file to /dev/modem as a convenience.  For pre-2.2
  kernels, the link is made to the cua* device.

  Do not try to use /etc/rc.d/rc.serial to configure a PCMCIA modem.
  This script should only be used to configure non-removable devices.
  Modify /etc/pcmcia/serial.opts if you want to do anything special to
  set up your modem.  Also, do not try to change the IO port and
  interrupt settings of a serial device using setserial.  This would
  tell the serial driver to look for the device in a different place,
  but would not change how the card's hardware is actually configured.
  The serial configuration script allows you to specify other setserial
  options, as well as whether a line should be added to /etc/inittab for
  this port.

  The device address passed to serial.opts has three comma-separated
  fields: the first is the scheme, the second is the socket number, and
  the third is the device instance.  The device instance may take
  several values for cards that support multiple serial ports, but for
  single-port cards, it will always be 0.  If you commonly use more than
  one modem, you may want to specify different settings based on socket
  position, as in:

       case "$ADDRESS" in
           # Options for modem in socket 0
           # Options for modem in socket 1

  If a PCMCIA modem is already configured when Linux boots, it may be
  incorrectly identified as an ordinary built-in serial port.  This is
  harmless, however, when the PCMCIA drivers take control of the modem,
  it will be assigned a different device slot.  It is best to either
  parse stab or use /dev/modem, rather than expecting a PCMCIA modem to
  always have the same device assignment.

  If you configure your kernel to load the basic Linux serial port
  driver as a module, you must edit /etc/pcmcia/config to indicate that
  this module must be loaded.  Edit the serial device entry to read:

       device "serial_cs"
         class "serial" module "misc/serial", "serial_cs"

  4.4.1.  Serial device parameters

  The following parameters can be defined in serial.opts:

        Specifies a path for a symbolic link to be created to the
        ``callout'' device (e.g., /dev/cua* for pre-2.2, or /dev/ttyS*
        for 2.2 kernels).

        Specifies options to be passed to the setserial command.

        If specified, this will be used to construct an inittab entry
        for the device.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        true, then ``cardctl eject'' will shut down a device even if it
        is busy.  If NO_FUSER is true, then the script will not try to
        kill processes using an ejected device.

  For example:

       case "$ADDRESS" in

  4.4.2.  Comments about specific cards

  ·  The Uniden Data 2000 Wireless CDPD card has some special dialing
     strings for initiating SLIP and PPP mode.  For SLIP, use ``ATDT2'';
     for PPP, "ATDT0".

  ·  Socket IO revision H serial port cards have a faster-than-normal
     clock rate for the UART.  The card's actual baud rate is four times
     faster than the serial driver thinks it is.  To work around the
     problem, specify SERIAL_OPTS="baud_base 460800" in

  4.4.3.  Diagnosing problems with serial devices

  ·  In 3.1.15 and later PCMCIA releases, the test_modem script in the
     debug-tools subdirectory of the PCMCIA source tree will spot some
     common problems.

  ·  Is your card recognized as a modem?  Check the system log and make
     sure that cardmgr identifies the card correctly and starts up the
     serial_cs driver.  If it doesn't, you may need to add a new entry
     to your /etc/pcmcia/config file so that it will be identified
     properly.  See the ``Configuring unrecognized cards'' section for

  ·  Is the modem configured successfully by serial_cs?  Again, check
     the system log and look for messages from the serial_cs driver.  If
     you see ``register_serial() failed'', you may have an I/O port
     conflict with another device.  Another tip-off of a conflict is if
     the device is reported to be an 8250; most modern modems should be
     identified as 16550A UART's.  If you think you're seeing a port
     conflict, edit /etc/pcmcia/config.opts and exclude the port range
     that was allocated for the modem.

  ·  Is there an interrupt conflict?  If the system log looks good, but
     the modem just doesn't seem to work, try using setserial to change
     the irq to 0, and see if the modem works.  This causes the serial
     driver to use a slower polled mode instead of using interrupts.  If
     this seems to fix the problem, it is likely that some other device
     in your system is using the interrupt selected by serial_cs.  You
     should add a line to /etc/pcmcia/config.opts to exclude this

  ·  If the modem seems to work only very, very slowly, this is an
     almost certain indicator of an interrupt conflict.

  ·  Make sure your problem is really a PCMCIA one.  It may help to see
     if the card works under DOS with the vendor's drivers.  Also, don't
     test the card with something complex like SLIP or PPP until you are
     sure you can make simple connections.  If simple things work but
     SLIP does not, your problem is most likely with SLIP, not with

  ·  If you get kernel messages indicating that the serial_cs module
     cannot be loaded, it means that your kernel does not have serial
     device support.  If you have compiled the serial driver as a
     module, you must modify /etc/pcmcia/config to indicate that the
     serial module should be loaded before serial_cs.

  4.5.  PCMCIA parallel port devices

  The Linux parallel port driver is layered so that several high-level
  device types can share use of the same low level port driver.  Printer
  devices are accessed via the /dev/lp* special device files.  The
  configuration of a printer device can be examined and modified with
  the tunelp command.

  The parport_cs module depends on the parport and parport_pc drivers,
  which may be either compiled into the kernel or compiled as modules.
  The layered driver structure means that any top-level parallel drivers
  (such as the plip driver, the printer driver, etc) must be compiled as
  modules.  These drivers only recognize parallel port devices at module
  startup time, so they need to be loaded after any PC Card parallel
  devices are configured.

  The device address passed to parport.opts has three comma-separated
  fields: the first is the scheme, the second is the socket number, and
  the third is the device instance.  The device instance may take
  several values for cards that support multiple parallel ports, but for
  single-port cards, it will always be 0.  If you commonly use more than
  one such card, you may want to specify different settings based on
  socket position, as in:

       case "$ADDRESS" in
           # Options for card in socket 0
           # Options for card in socket 1

  4.5.1.  Parallel device parameters

  The following parameters can be defined in parport.opts:

        Specifies a path for a symbolic link to be created to the
        printer port.

        Specifies options to be passed to the tunelp command.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        true, then ``cardctl eject'' will shut down a device even if it
        is busy.  If NO_FUSER is true, then the script will not try to
        kill processes using an ejected device.

  For example:

       case "$ADDRESS" in

  4.5.2.  Diagnosing problems with parallel port devices

  ·  Is there an interrupt conflict?  If the system log looks good, but
     the port just doesn't seem to work, try using tunelp to change the
     irq to 0, and see if things improve.  This switches the driver to
     polling mode.  If this seems to fix the problem, it is likely that
     some other device in your system is using the interrupt selected by
     parport_cs.  You should add a line to /etc/pcmcia/config.opts to
     exclude this interrupt.

  ·  If you get kernel messages indicating that the parport_cs module
     cannot be loaded, it means that your kernel does not have parallel
     device support.  If you have compiled the parallel driver as a
     module, you may need to modify /etc/pcmcia/config to indicate that
     the parport and parport_pc modules should be loaded before

  4.6.  PCMCIA SCSI adapters

  All the currently supported PCMCIA SCSI cards are work-alikes of one
  of the following ISA bus cards: the Qlogic, the Adaptec AHA-152X, or
  the Future Domain TMC-16x0.  The PCMCIA drivers are built by linking
  some PCMCIA-specific code (in qlogic_cs.c, aha152x_cs.c, or
  fdomain_cs.c) with the normal Linux SCSI driver, pulled from the Linux
  kernel source tree.  The Adaptec APA1480 CardBus driver is based on
  the kernel aic7xxx PCI driver.  Due to limitations in the Linux SCSI
  driver model, only one removable card per driver is supported.

  When a new SCSI host adapter is detected, the SCSI drivers will probe
  for devices.  Check the system log to make sure your devices are
  detected properly.  New SCSI devices will be assigned to the first
  available SCSI device files.  The first SCSI disk will be /dev/sda,
  the first SCSI tape will be /dev/st0, and the first CD-ROM will be

  A list of SCSI devices connected to this host adapter will be shown in
  stab, and the SCSI configuration script, /etc/pcmcia/scsi, will be
  called once for each attached device, to either configure or shut down
  that device.  The default script does not take any actions to
  configure SCSI devices, but will properly unmount filesystems on SCSI
  devices when a card is removed.

  The device addresses passed to scsi.opts are complicated, because of
  the variety of things that can be attached to a SCSI adapter.
  Addresses consist of either six or seven comma-separated fields: the
  current scheme, the device type, the socket number, the SCSI channel,
  ID, and logical unit number, and optionally, the partition number.
  The device type will be ``sd'' for disks, ``st'' for tapes, ``sr'' for
  CD-ROM devices, and ``sg'' for generic SCSI devices.  For most setups,
  the SCSI channel and logical unit number will be 0.  For disk devices
  with several partitions, scsi.opts will first be called for the whole
  device, with a five-field address.  The script should set the PARTS
  variable to a list of partitions.  Then, scsi.opts will be called for
  each partition, with the longer six-field addresses.

  If your kernel does not have a top-level driver (disk, tape, etc) for
  a particular SCSI device, then the device will not be configured by
  the PCMCIA drivers.  As a side effect, the device's name in stab will
  be something like ``sd#nnnn'' where ``nnnn'' is a four-digit hex
  number.  This happens when cardmgr is unable to translate a SCSI
  device ID into a corresponding Linux device name.

  It is possible to modularize the top-level SCSI drivers so that they
  are loaded on demand.  To do so, you need to edit /etc/pcmcia/config
  to tell cardmgr which extra modules need to be loaded when your
  adapter is configured.  For example:

  device "aha152x_cs"
    class "scsi" module "scsi/scsi_mod", "scsi/sd_mod", "aha152x_cs"

  would say to load the core SCSI module and the top-level disk driver
  module before loading the regular PCMCIA driver module.

  Always turn on SCSI devices before powering up your laptop, or before
  inserting the adapter card, so that the SCSI bus is properly
  terminated when the adapter is configured.  Also be very careful about
  ejecting a SCSI adapter.  Be sure that all associated SCSI devices are
  unmounted and closed before ejecting the card.  The best way to ensure
  this is to use either cardctl or cardinfo to request card removal
  before physically ejecting the card.  For now, all SCSI devices should
  be powered up before plugging in a SCSI adapter, and should stay
  connected until after you unplug the adapter and/or power down your

  There is a potential complication when using these cards that does not
  arise with ordinary ISA bus adapters.  The SCSI bus carries a
  ``termination power'' signal that is necessary for proper operation of
  ordinary passive SCSI terminators.  PCMCIA SCSI adapters do not supply
  termination power, so if it is required, an external device must
  supply it.  Some external SCSI devices may be configured to supply
  termination power.  Others, such as the Zip Drive and the Syquest EZ-
  Drive, use active terminators that do not depend on it.  In some
  cases, it may be necessary to use a special terminator block such as
  the APS SCSI Sentry 2, which has an external power supply.  When
  configuring your SCSI device chain, be aware of whether or not any of
  your devices require or can provide termination power.

  4.6.1.  SCSI device parameters

  The following parameters can be defined in scsi.opts:

        Specifies a path for a symbolic link to be created to this

        A boolean (y/n) setting: specifies if an entry should be added
        to /etc/fstab for this device.

        A boolean (y/n) setting: specifies if the filesystem should be
        checked before being mounted, with ``fsck -Ta''.

        A boolean (y/n) setting: specifies if this device should be
        automatically mounted at card insertion time.

        The filesystem type, mount options, and mount point to be used
        for the fstab entry and/or mounting the device.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        true, then ``cardctl eject'' will shut down a device even if it
        is busy.  If NO_FUSER is true, then the script will not try to
        kill processes using an ejected device.

  For example, here is a script for configuring a disk device at SCSI ID
  3, with two partitions, and a CD-ROM at SCSI ID 6:
       case "$ADDRESS" in
           # This device has two partitions...
           PARTS="1 2"
           # Options for partition 1:
           #  update /etc/fstab, and mount an ext2 fs on /usr1
           DO_FSTAB="y" ; DO_FSCK="y" ; DO_MOUNT="y"
           # Options for partition 2:
           #  update /etc/fstab, and mount an MS-DOS fs on /usr2
           DO_FSTAB="y" ; DO_FSCK="y" ; DO_MOUNT="y"
           # Options for CD-ROM at SCSI ID 6
           DO_FSTAB="y" ; DO_FSCK="n" ; DO_MOUNT="y"

  4.6.2.  Comments about specific cards

  ·  The Adaptec APA-1480 CardBus card needs a large IO port window (256
     contiguous ports aligned on a 256-port boundary).  It may be
     necessary to expand the IO port regions in /etc/pcmcia/config.opts
     to guarantee that such a large window can be found.

  ·  The Adaptec APA-460 SlimSCSI adapter is not supported.  This card
     was originally sold under the Trantor name, and when Adaptec merged
     with Trantor, they continued to sell the Trantor card with an
     Adaptec label.  The APA-460 is not compatible with any existing
     Linux driver.

  ·  I have had one report of a bad interaction between the New Media
     Bus Toaster and a UMAX Astra 1200s scanner.  Due to the complexity
     of the SCSI protocol, when diagnosing problems with SCSI devices,
     it is worth considering that incompatible combinations like this
     may exist and may not be documented.

  4.6.3.  Diagnosing problems with SCSI adapters

  ·  With the aha152x_cs driver (used by Adaptec, New Media, and a few
     others), it seems that SCSI disconnect/reconnect support is a
     frequent source of trouble with tape drives.  To disable this
     ``feature,'' add the following to /etc/pcmcia/config.opts:

  module "aha152x_cs" opts "reconnect=0"

  ·  Also with the aha152x_cs driver, certain devices seem to require a
     longer startup delay, controlled via the reset_delay module
     parameter.  The Yamaha 4416S CDR drive is one such device.  The
     result is the device is identified successfully, then hangs the
     system.  In such cases, try:

       module "aha152x_cs" opts "reset_delay=500"

  ·  Another potential source of SCSI device probe problems is probing
     of multiple LUN's.  If you see successful detection of a device,
     followed by SCSI bus timeouts when LUN 1 for that device is probed,
     then disable the kernel's CONFIG_SCSI_MULTI_LUN option.

  ·  If you have compiled SCSI support as modules (CONFIG_SCSI is
     ``m''), you may need to modify /etc/pcmcia/config to load the SCSI
     modules before the appropriate *_cs driver is loaded.

  ·  If you get ``aborting command due to timeout'' messages when the
     SCSI bus is probed, you almost certainly have an interrupt

  ·  If the host driver reports ``no SCSI devices found'', verify that
     your kernel was compiled with the appropriate top-level SCSI
     drivers for your devices (i.e., disk, tape, CD-ROM, and/or
     generic).  If a top-level driver is missing, devices of that type
     will be ignored.

  4.7.  PCMCIA memory cards

  The memory_cs driver handles all types of memory cards, as well as
  providing direct access to the PCMCIA memory address space for cards
  that have other functions.  When loaded, it creates a combination of
  character and block devices.  See the man page for the module for a
  complete description of the device naming scheme.  Block devices are
  used for disk-like access (creating and mounting filesystems, etc).
  The character devices are for "raw" unbuffered reads and writes at
  arbitrary locations.

  The device address passed to memory.opts consists of two fields: the
  scheme, and the socket number.  The options are applied to the first
  common memory partition on the corresponding memory card.

  Some flash memory cards, and most simple static RAM cards, lack a
  ``Card Information Structure'' (CIS), which is the system PCMCIA cards
  use to identify themselves.  Normally, cardmgr will assume that any
  card that lacks a CIS is a simple memory card, and load the memory_cs
  driver.  Thus, a common side effect of a general card identification
  problem is that other types of cards may be misdetected as memory

  There is another issue to consider when handling memory cards that do
  not have CIS information.  At startup time, the PCMCIA package tries
  to use the first detected card to determine what memory regions are
  usable for PCMCIA.  The memory scan can be fooled if that card is a
  simple memory card.  If you plan to use memory cards often, it is best
  to limit the memory windows in /etc/pcmcia/config.opts to known-good

  The memory_cs driver uses a heuristic to guess the capacity of these
  cards.  The heuristic does not work for write protected cards, and may
  make mistakes in some other cases as well.  If a card is misdetected,
  its size should then be explicitly specified when using commands such
  as dd or mkfs.  The memory_cs module also has a parameter for
  overriding the size detection.  See the man page.

  4.7.1.  Memory device parameters

  The following parameters can be specified in memory.opts:

        A boolean (y/n) setting: specifies if an entry should be added
        to /etc/fstab for this device.

        A boolean (y/n) setting: specifies if the filesystem should be
        checked before being mounted, with ``fsck -Ta''.

        A boolean (y/n) setting: specifies if this device should be
        automatically mounted at card insertion time.

        The filesystem type, mount options, and mount point to be used
        for the fstab entry and/or mounting the device.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        true, then ``cardctl eject'' will shut down a device even if it
        is busy.  If NO_FUSER is true, then the script will not try to
        kill processes using an ejected device.

  Here is an example of a script that will automatically mount memory
  cards based on which socket they are inserted into:

       case "$ADDRESS" in
           # Mount filesystem, but don't update /etc/fstab
           DO_FSTAB="n" ; DO_FSCK="y" ; DO_MOUNT="y"
           FSTYPE="ext2" ; OPTS=""
           # Mount filesystem, but don't update /etc/fstab
           DO_FSTAB="n" ; DO_FSCK="y" ; DO_MOUNT="y"
           FSTYPE="ext2" ; OPTS=""

  4.7.2.  Using linear flash memory cards

  The following information applies only to so-called ``linear flash''
  memory cards.  Many flash cards, including all SmartMedia and
  CompactFlash cards, actually include circuitry to emulate an IDE disk
  device.  Those cards are thus handled as IDE devices, not memory

  There are two major formats for flash memory cards: the FTL or ``flash
  translation layer'' style, and the Microsoft Flash File System.  The
  FTL format is generally more flexible because it allows any ordinary
  high-level filesystem (ext2, ms-dos, etc) to be used on a flash card
  as if it were an ordinary disk device.  The FFS is a completely
  different filesystem type.  Linux cannot currently handle cards
  formated with FFS.

  To use a flash memory card as an ordinary disk-like block device,
  first create an FTL partition on the device with the ftl_format
  command.  This layer hides the device-specific details of flash memory
  programming and make the card look like a simple block device.  For

       ftl_format -i /dev/mem0c0c

  Note that this command accesses the card through the ``raw'' memory
  card interface.  Once formatted, the card can be accessed as an
  ordinary block device via the ftl_cs driver.  For example:

       mke2fs /dev/ftl0c0
       mount -t ext2 /dev/ftl0c0 /mnt

  Device naming for FTL devices is tricky.  Minor device numbers have
  three parts: the card number, the region number on that card, and
  optionally, the partition within that region.  A region can either be
  treated as a single block device with no partition table (like a
  floppy), or it can be partitioned like a hard disk device.  The
  ``ftl0c0'' device is card 0, common memory region 0, the entire
  region.  The ``ftl0c0p1'' through ``ftl0c0p4'' devices are primary
  partitions 1 through 4 if the region has been partitioned.

  Configuration options for FTL partitions can be given in ftl.opts,
  which is similar in structure to memory.opts.  The device address
  passed to ftl.opts consists of three or four fields: the scheme, the
  socket number, the region number, and optionally, the partition
  number.  Most flash cards have just one flash memory region, so the
  region number will generally always be zero.

  Intel Series 100 flash cards use the first 128K flash block to store
  the cards' configuration information.  To prevent accidental erasure
  of this information, ftl_format will automatically detect this and
  skip the first block when creating an FTL partition.

  4.8.  PCMCIA ATA/IDE card drives

  ATA/IDE drive support is based on the regular kernel IDE driver.  This
  includes SmartMedia and CompactFlash devices: these flash memory cards
  are set up so that they emulate an IDE interface.  The PCMCIA-specific
  part of the driver is ide_cs.  Be sure to use cardctl or cardinfo to
  shut down an ATA/IDE card before ejecting it, as the driver has not
  been made ``hot-swap-proof''.

  The device addresses passed to ide.opts consist of either three or
  four fields: the current scheme, the socket number, the drive's serial
  number, and an optional partition number.  The ide_info command can be
  used to obtain an IDE device's serial number.  As with SCSI devices,
  ide.opts is first called for the entire device.  If ide.opts returns a
  list of partitions in the PARTS variable, the script will then be
  called for each partition.

  4.8.1.  ATA/IDE fixed-disk device parameters

  The following parameters can be specified in ide.opts:

        A boolean (y/n) setting: specifies if an entry should be added
        to /etc/fstab for this device.

        A boolean (y/n) setting: specifies if the filesystem should be
        checked before being mounted, with ``fsck -Ta''.

        A boolean (y/n) setting: specifies if this device should be
        automatically mounted at card insertion time.

        The filesystem type, mount options, and mount point to be used
        for the fstab entry and/or mounting the device.

        Boolean (y/n) settings for card eject policy.  If NO_CHECK is
        true, then ``cardctl eject'' will shut down a device even if it
        is busy.  If NO_FUSER is true, then the script will not try to
        kill processes using an ejected device.

  Here is an example ide.opts file to mount the first partition of any
  ATA/IDE card on /mnt.

       case "$ADDRESS" in
           DO_FSTAB="y" ; DO_FSCK="y" ; DO_MOUNT="y"

  4.8.2.  Diagnosing problems with ATA/IDE adapters

  ·  An IO port conflict may cause the IDE driver to misdetect the drive
     geometry and report ``INVALID GEOMETRY: 0 PHYSICAL HEADS?''.  To
     fix, try excluding the selected IO port range in

  ·  Some IDE drives violate the PCMCIA specification by requiring more
     time to spin up than the maximum allowed card setup time.  This may
     result in ``timed out during reset'' messages at card detect time.
     Adjust the unreset_delay and/or unreset_limit parameters for the
     pcmcia_core module to give a drive more time to spin up; see the
     pcmcia_core man page for parameter details.  For example:


  ·  To use an ATA/IDE CD-ROM device, your kernel must be compiled with
     CONFIG_BLK_DEV_IDECD enabled.  This will normally be the case for
     standard kernels, however it is something to be aware of if you
     compile a custom kernel.

  ·  A common error when using IDE drives is try to mount the wrong
     device file.  Generally, you want to mount a partition of the
     device, not the entire device (i.e., /dev/hde1, not /dev/hde).

  ·  The Linux IDE driver may have trouble configuring certain
     removable-media drives if no media is present at insertion time.
     The IBM Portable DriveBay has this problem.

  ·  Some kernels will report a pair of ``drive_cmd'' errors at
     insertion time.  These errors can be ignored: they pop up when a
     removable IDE device does not accept the IDE ``door lock'' command.

  4.9.  Multifunction cards

  A single interrupt can be shared by several drivers, such as the
  serial driver and an ethernet driver: in fact, the PCMCIA
  specification requires all card functions to share the same interrupt.
  Normally, all card functions are available without having to swap
  drivers.  All Linux kernels support this kind of interrupt sharing.

  Simultaneous use of two card functions is ``tricky'' and various
  hardware vendors have implemented interrupt sharing in their own
  incompatible (and sometimes proprietary) ways.  The drivers for some
  cards (Ositech Jack of Diamonds, 3Com 3c562 and related cards, Linksys
  cards) properly support simultaneous access, but others (older
  Megahertz cards in particular) do not.  If you have trouble using a
  card with both functions active, try using each function in isolation.
  That may require explicitly doing an ``ifconfig down'' to shut down a
  network interface and use a modem on the same card.

  5.  Advanced topics

  5.1.  Resource allocation for PCMCIA devices

  In theory, it should not really matter which interrupt is allocated to
  which device, as long as two devices are not configured to use the
  same interrupt.  In /etc/pcmcia/config.opts you'll find a place for
  excluding interrupts that are used by non-PCMCIA devices.

  Similarly, there is no way to directly specify the I/O addresses for a
  card to use.  The /etc/pcmcia/config.opts file allows you to specify
  ranges of ports available for use by any card, or to exclude ranges
  that conflict with other devices.

  After modifying /etc/pcmcia/config.opts, you can reinitialize cardmgr
  with ``kill -HUP''.

  The interrupt used to monitor card status changes is chosen by the
  low-level socket driver module (i82365 or tcic) before cardmgr parses
  /etc/pcmcia/config, so it is not affected by changes to this file.  To
  set this interrupt, use the cs_irq= option when the socket driver is
  loaded, by setting the PCIC_OPTS variable in /etc/rc.d/rc.pcmcia.

  All the client card drivers have a parameter called irq_list for
  specifying which interrupts they may try to allocate.  These driver
  options should be set in your /etc/pcmcia/config file.  For example:

       device "serial_cs"
         module "serial_cs" opts "irq_list=8,12"

  would specify that the serial driver should only use irq 8 or irq 12.
  Regardless of irq_list settings, Card Services will never allocate an
  interrupt that is already in use by another device, or an interrupt
  that is excluded in the config file.

  5.2.  PCI interrupt configuration problems and solutions

  Most of the following discussion applies to 2.2 and earlier kernels.
  With 2.4 and later kernels, the PCI subsystem has more complete
  responsibility for PCI interrupt management.  The following tips may
  help diagnose a problem, though some workarounds described here may
  not be available.

  5.2.1.  An overview of PCI interrupt routing issues

  Each PCI slot has four PCI interrupt pins, INTA through INTD.  Single
  function devices will only use the INTA pin; multifunction devices may
  use multiple INT pins.  On the processor side, on x86 single processor
  systems, incoming hardware interrupts are directed to interrupt
  requests (irq's) numbered 0..15.  The PCI interrupt router, usually
  part of the PCI-to-ISA host bridge, determines how incoming PCI
  interrupts are mapped to CPU irq numbers.  Most modern bridge chips
  have several PCI interrupt inputs, known as PIRQ1, PIRQ2, etc, each of
  which can be routed to any CPU irq number.  So we might have something

       PCI slot 1 INTA --> router PIRQ1 --> CPU irq 9
       PCI slot 1 INTB --> router PIRQ2 --> CPU irq 10

       PCI slot 2 INTA --> router PIRQ2 --> CPU irq 10
       PCI slot 2 INTB --> router PIRQ1 --> CPU irq 9

  Multiple INT pins are often connected to the same PIRQ pin.  Usually,
  the connections from INT pins to PIRQ pins are arranged to spread
  installed devices out as much as possible, to give the OS the most
  flexibility for choosing how interrupts are shared.  The mapping from
  bridge PIRQ pins to CPU irq numbers can be obtained by reading
  registers in the interrupt router.  The mapping from INT pins to the
  router's PIRQ pins, however, depends on how the board designer decided
  to connect things up, and cannot be directly determined by driver

  For most PCI devices, the OS does not need to understand the interrupt
  router details.  Each PCI device has a configuration register, the PCI
  Interrupt Line Register, that the BIOS initializes with the
  appropriate CPU irq number for that device.  Unfortunately, the BIOS
  generally will not configure PCI interrupts for CardBus bridge

  The PCI BIOS's Interrupt Routing Table is a data structure that
  contains information about the mapping from PCI INT pins to the PIRQ
  pins on the PCI interrupt router.  The routing information in the
  table is stored in a somewhat unhelpful form, however.  For each
  device's INT pins, the table specifies a ``link value''.  All
  interrupts with the same link value are wired to the same PIRQ pin;
  however, the meaning of the link values is defined by the chipset

  Several tools are available for examining PCI interrupt routing

     lspci, /proc/pci
        These will show you resource information (including interrupt
        assignments, where they are known) for all your PCI devices.

        This is in the debug-tools directory of the PCMCIA source
        distribution.  It dumps the contents of your PCI interrupt
        routing table, if available.  It also scans for known interrupt
        routers and dumps their current interrupt steering settings.

  Several PCMCIA module parameters affect PCI interrupt routing:

     pcmcia_core module: cb_pci_irq=n
        This option specifies one interrupt number to be used to program
        the PCI interrupt router for all CardBus sockets that do not
        already have an interrupt assignment. It only has any effect on
        systems that have a PCI irq routing table, and a known interrupt

     i82365 module: irq_mode=n
        Most CardBus bridges offer several methods for delivering
        interrupts to the host.  The i82365 module by default assumes
        that a bridge can deliver both PCI and ISA interrupts, since
        this is normal for laptops.  A setting of ``irq_mode=0'' can be
        used to force a bridge to use only PCI interrupts.  See the man
        page for the i82365 module for a description of what other
        values mean for different bridge types.

     i82365 module: irq_list=n,n,...
        This parameter lists which ISA interrupt(s) can be used for
        PCMCIA.  If no ISA interrupts are available, specify
        ``irq_list=0''.  Note that ``irq_mode=0'' implies

     i82365 module: pci_irq_list=n,n,...
        This option specifies a list of PCI interrupt numbers to use for
        CardBus sockets.  It differs from cb_pci_irq, because it does
        not actually program the PCI interrupt router; it can be used
        when you know the PCI interrupts are already set up a certain
        way, even if you do not know how the router works.

  If you are having problems that you think may be related to PCI
  interrupt configuration, you should first verify that you have a
  reasonably current PCMCIA driver package.  Also carefully look at the
  startup messages when the PCMCIA kernel modules are loaded.  You
  should see something like:

       Linux PCMCIA Card Services 3.1.18
         kernel build: 2.2.14-5.0 #1 Tue May 9 10:44:24 PDT 2000
         options:  [pci] [cardbus] [apm] [pnp]
       PCI routing table version 1.0 at 0xfdf30
       Intel PCIC probe:
         TI 1125 rev 02 PCI-to-CardBus at slot 00:07, mem 0x20000000
           host opts [0]: [ring] [serial pci & irq] [pci irq 11] ...
           host opts [0]: [ring] [serial pci & irq] [pci irq 11] ...
         ISA irqs (scanned) = 3,4,7 PCI status changes

  The ``PCI routing table'' message indicates that a valid routing table
  was found.  The ``host opts'' lines indicate the interrupt delivery
  mode and whether or not a PCI interrupt could be determined for each
  socket.  And the final line indicates the results of the scan for
  available interrupts.

  5.2.2.  CardBus bridge is not detected by the PCI BIOS


  ·  Intel PCIC probe: not found.

  ·  The bridge does not show up in lspci or in /proc/pci.

  The Lucent/SCM PCI-to-CardBus adapters seem to confuse the PCI BIOS on
  some older systems.  Lucent says that this card is only supported on
  systems that have a BIOS that supports the PCI 2.2 specification, or
  are PC99 compliant.  Some older systems will not detect the Lucent
  card at all, and if the system can't detect it, the Linux drivers
  cannot use it.  The only possible resolutions are a BIOS upgrade, or
  using a different motherboard or CardBus adapter.

  5.2.3.  PCI interrupt delivery problems


  ·  Cards seem to be configured correctly, but do not work.

  ·  /proc/interrupts shows a count of 0 for interrupts assigned to
     PCMCIA drivers.

  CardBus bridges usually support two types of interrupts, PCI and ISA.
  Partly for historical reasons, it has become conventional to use PCI
  interrupts for signaling card insertion and removal events, and for
  CardBus card interrupts; and ISA interrupts for 16-bit cards.  Since
  version 3.1.9, this is the scheme that the Linux PCMCIA system will
  use by default.  Most CardBus bridges support multiple methods for
  delivering interrupts to the host CPU.  Methods include ``parallel''
  interrupts, where each supported irq has a dedicated pin on the
  bridge; various serial interrupt protocols, where one or two pins are
  used to communicate with an interrupt controller; and hybrids, where
  PCI interrupts might be signalled using dedicated pins, while ISA
  interrupts are delivered via a serial controller.

  In general, it is the responsibility of the BIOS to program a bridge
  for the appropriate interrupt delivery method.  However, there are
  systems that do this incorrectly, and in some cases, there is no way
  for software to safely detect the correct delivery method.  The i82365
  module reports the bridge mode at startup time, and has a parameter,
  irq_mode, that can be used to reconfigure it.  Not all bridges support
  this parameter, and the meaning of irq_mode depends on the bridge
  type.  See the i82365 man page for a description of what values are
  supported by your bridge.  In some cases, a bridge may function
  correctly in more than one interrupt mode.

  Most PCMCIA card readers that fit in a PCI bus slot only provide PCI
  interrupt routing.  The Linux drivers assume that all bridges have ISA
  interrupt capability, since that is generally correct on laptops.
  With a card reader, it will generally be necessary to use the irq_mode
  parameter to specify a ``PCI only'' interrupt delivery mode; the value
  of the parameter depends on the bridge type, so check the i82365 man
  page.  A few PCI card readers require an irq_mode that permits ISA
  interrupts, but those interrupts are not actually connected; in that
  case, use ``irq_list=0''.

  Check the system log and verify that the CardBus bridge has a PCI
  interrupt assignment.  If it does not, then resolve that problem
  first, then return here if the symptoms persist.  Next, experiment
  with different values for the irq_mode parameter.

  5.2.4.  No PCI interrupt assignment; valid routing table


  ·  The Intel PCIC probe reports ``no pci irq'' for each socket.

  ·  There is a routing table, and the router type is supported.

  When a routing table is present, the pcmcia_core module will try to
  automatically configure the PCI interrupt router, but only does so
  when it has a safe and unambiguous choice for what PCI interrupt to
  use.  If there are several valid choices, then you must use the
  ``cb_pci_irq=...'' option to specify which interrupt to assign.  Your
  best bet is to pick the most lightly used interrupt that is already
  assigned to another PCI device.

  Moving the card to another slot sometimes offers a quick solution.  If
  that slot shares its interrupt with an already-configured device, then
  the PCMCIA drivers will have no trouble figuring out the assignment.

  5.2.5.  No PCI interrupt assignment; unknown interrupt router


  ·  The Intel PCIC probe reports ``no pci irq'' for each socket.

  ·  There is a routing table, but the router is an unknown type.

  Adding support for a new interrupt router is tricky but not a big job.
  First determine, from a datasheet, how your interrupt router steers
  PCI interrupts.  Then, see if you can guess the meaning of the link
  values from the output of dump_pirq.  Usually this is reasonably
  obvious.  Most routers have four PIRQ pins, and the link values might
  be something like 1,2,3,4, or 0x10,0x18,0x20,0x28, or
  0x60,0x61,0x62,0x63.  The values are usually chosen so that they can
  be easily converted to the location of the appropriate interrupt
  steering register.  Finally, add small functions to
  modules/pci_fixup.c to get/set the interrupt steering information for
  this router, using the other routers as examples.

  5.2.6.  No PCI interrupt assignment; no routing table


  ·  The Intel PCIC probe reports ``no pci irq'' for each socket.

  ·  No interrupt routing table is found.

  Without an interrupt routing table, we cannot tell how interrupts from
  the CardBus bridge are directed to CPU irq numbers.  All hope is not
  lost: you may be able to guess the PCI interrupt assignment and use
  the ``pci_irq_list=...'' option to pass this information to the i82365
  module.  Good guesses might include the interrupt(s) assigned to other
  PCI devices, the interrupt(s) used under Windows, or any other
  interrupts that are unaccounted for.

  You may also want to experiment with putting the adapter in different
  PCI slots, for each pci_irq_list you try.  You are trying to find a
  slot that shares its interrupt with an already-configured device, and
  might need to try several slots to find one.

  5.3.  How can I have separate device setups for home and work?

  This is fairly easy using ``scheme'' support.  Use two configuration
  schemes, called ``home'' and ``work''.  Here is an example of a
  network.opts script with scheme-specific settings:

       case "$ADDRESS" in
           # definitions for network card in work scheme
           # definitions for network card in home scheme

  The first part of a device address is always the configuration scheme.
  In this example, the second ``case'' clause will select for both the
  ``home'' and ``default'' schemes.  So, if the scheme is unset for any
  reason, it will default to the ``home'' setup.

  Now, to select between the two sets of settings, run either:

       cardctl scheme home


       cardctl scheme work

  The cardctl command does the equivalent of shutting down all your
  cards and restarting them.  The command can be safely executed whether
  or not the PCMCIA system is loaded, but the command may fail if you
  are using other PCMCIA devices at the time (even if their
  configurations are not explicitly dependant on the scheme setting).

  To find out the current scheme setting, run:

       cardctl scheme

  By default, the scheme setting is persistent across boots.  This can
  have undesirable effects if networking is initialized for the wrong
  environment.  Optionally, you can set the initial scheme value with
  the SCHEME startup option (see ``Startup options'' for details).  It
  is also possible to set the scheme from the lilo boot prompt.  Since
  lilo passes unrecognized options to init as environment variables, a
  value for SCHEME (or any other PCMCIA startup option) at the boot
  prompt will be propagated into the PCMCIA startup script.

  To save even more keystrokes, schemes can be specified in lilo's
  configuration file.  For instance, you could have:

       root = /dev/hda1
       image = /boot/vmlinuz
         label  = home
         append = "SCHEME=home"
       image = /boot/vmlinuz
         label  = work
         append = "SCHEME=work"

  Typing ``home'' or ``work'' at the boot prompt would then boot into
  the appropriate scheme.
  5.4.  Booting from a PCMCIA device

  Having the root filesystem on a PCMCIA device is tricky because the
  Linux PCMCIA system is not designed to be linked into the kernel.  Its
  core components, the loadable kernel modules and the user mode cardmgr
  daemon, depend on an already running system.  The kernel's ``initrd''
  facility works around this requirement by allowing Linux to boot using
  a temporary ram disk as a minimal root image, load drivers, and then
  re-mount a different root filesystem.  The temporary root can
  configure PCMCIA devices and then re-mount a PCMCIA device as root.

  The initrd image absolutely must reside on a bootable device: this
  generally cannot be put on a PCMCIA device.  This is a BIOS
  limitation, not a kernel limitation.  It is useful here to distinguish
  between ``boot-able'' devices (i.e., devices that can be booted), and
  ``root-able'' devices (i.e., devices that can be mounted as root).
  ``Boot-able'' devices are determined by the BIOS, and are generally
  limited to internal floppy and hard disk drives.  ``Root-able''
  devices are any block devices that the kernel supports once it has
  been loaded.  The initrd facility makes more devices ``root-able'',
  not ``boot-able''.

  Some Linux distributions will allow installation to a device connected
  to a PCMCIA SCSI adapter, as an unintended side-effect of their
  support for installs from PCMCIA SCSI CD-ROM devices.  However, at
  present, no Linux installation tools support configuring an
  appropriate ``initrd'' to boot Linux with a PCMCIA root filesystem.
  Setting up a system with a PCMCIA root thus requires that you use
  another Linux system to create the ``initrd'' image.  If another Linux
  system is not available, another option would be to temporarily
  install a minimal Linux setup on a non-PCMCIA drive, create an initrd
  image, and then reinstall to the PCMCIA target.

  The Linux Bootdisk-HOWTO has some general information about setting up
  boot disks but nothing specific to initrd.  The main initrd document
  is included with recent kernel source code distributions, in
  linux/Documentation/initrd.txt.  Before beginning, you should read
  this document.  A familiarity with lilo is also helpful.  Using initrd
  also requires that you have a kernel compiled with CONFIG_BLK_DEV_RAM
  and CONFIG_BLK_DEV_INITRD enabled.

  This is an advanced configuration technique, and requires a high level
  of familiarity with Linux and the PCMCIA system.  Be sure to read all
  the relevant documentation before starting.  The following cookbook
  instructions should work, but deviations from the examples will
  quickly put you in uncharted and ``unsupported'' territory, and you
  will be on your own.

  This method absolutely requires that you use a PCMCIA driver release
  of 2.9.5 or later.  Older PCMCIA packages or individual components
  will not work in the initrd context.  Do not mix components from
  different releases.

  5.4.1.  The pcinitrd helper script

  The pcinitrd script creates a basic initrd image for booting with a
  PCMCIA root partition.  The image includes a minimal directory
  heirarchy, a handful of device files, a few binaries, shared
  libraries, and a set of PCMCIA driver modules.  When invoking
  pcinitrd, you specify the driver modules that you want to be included
  in the image.  The core PCMCIA components, pcmcia_core and ds, are
  automatically included.

  As an example, say that your laptop uses an i82365-compatible host
  controller, and you want to boot Linux with the root filesystem on a
  hard drive attached to an Adaptec SlimSCSI adapter.  You could create
  an appropriate initrd image with:

       pcinitrd -v initrd pcmcia/i82365.o pcmcia/aha152x_cs.o

  To customize the initrd startup sequence, you could mount the image
  using the ``loopback'' device with a command like:

       mount -o loop -t ext2 initrd /mnt

  and then edit the linuxrc script.  The configuration files will be
  installed under /etc in the image, and can also be customized.  See
  the man page for pcinitrd for more information.

  5.4.2.  Creating an initrd boot floppy

  After creating an image with pcinitrd, you can create a boot floppy by
  copying the kernel, the compressed initrd image, and a few support
  files for lilo to a clean floppy.  In the following example, we assume
  that the desired PCMCIA root device is /dev/sda1:

       mke2fs /dev/fd0
       mount /dev/fd0 /mnt
       mkdir /mnt/etc /mnt/boot /mnt/dev
       cp -a /dev/fd0 /dev/sda1 /mnt/dev
       cp [kernel-image] /mnt/vmlinuz
       cp /boot/boot.b /mnt/boot/boot.b
       gzip < [initrd-image] > /mnt/initrd

  Create /mnt/etc/lilo.conf with the contents:


  Finally, invoke lilo with:

       lilo -r /mnt

  When lilo is invoked with -r, it performs all actions relative to the
  specified alternate root directory.  The reason for creating the
  device files under /mnt/dev was that lilo will not be able to use the
  files in /dev when it is running in this alternate-root mode.

  5.4.3.  Installing an initrd image on a non-Linux drive

  One common use of the initrd facility would be on systems where the
  internal hard drive is dedicated to another operating system.  The
  Linux kernel and initrd image can be placed in a non-Linux partition,
  and lilo or LOADLIN can be set up to boot Linux from these images.

  Assuming that you have a kernel has been configured for the
  appropriate root device, and an initrd image created on another
  system, the easiest way to get started is to boot Linux using LOADLIN,

       LOADLIN <kernel> initrd=<initrd-image>

  Once you can boot Linux on your target machine, you could then install
  lilo to allow booting Linux directly.  For example, say that /dev/hda1
  is the non-Linux target partition and /mnt can be used as a mount
  point.  First, create a subdirectory on the target for the Linux

       mount /dev/hda1 /mnt
       mkdir /mnt/linux
       cp [kernel-image] /mnt/linux/vmlinuz
       cp [initrd-image] /mnt/linux/initrd

  In this example, say that /dev/sda1 is the desired Linux root
  partition, a SCSI hard drive mounted via a PCMCIA SCSI adapter.  To
  install lilo, create a lilo.conf file with the contents:


  The boot= line says to install the boot loader in the master boot
  record of the specified device.  The root= line identifies the desired
  root filesystem to be used after loading the initrd image, and may be
  unnecessary if the kernel image is already configured this way.  The
  other= section is used to describe the other operating system
  installed on /dev/hda1.

  To install lilo in this case, use:

       lilo -C lilo.conf

  Note that in this case, the lilo.conf file uses absolute paths that
  include /mnt.  I did this in the example because the target filesystem
  may not support the creation of Linux device files for the boot= and
  root= options.

  6.  Dealing with unsupported cards

  6.1.  Configuring unrecognized cards

  Assuming that your card is supported by an existing driver, all that
  needs to be done is to add an entry to /etc/pcmcia/config to tell
  cardmgr how to identify the card, and which driver(s) need to be
  linked up to this card.  Check the man page for pcmcia for more
  information about the config file format.  If you insert an unknown
  card, cardmgr will normally record some identification information in
  the system log that can be used to construct the config entry.  This
  information can also be displayed with the ``cardctl ident'' command.

  Here is an example of how cardmgr will report an unsupported card in
  the system log:

       cardmgr[460]: unsupported card in socket 1
       cardmgr[460]: product info: "MEGAHERTZ", "XJ2288", "V.34 PCMCIA MODEM"
       cardmgr[460]: manfid: 0x0101, 0x1234  function: 2 (serial)

  The corresponding entry in /etc/pcmcia/config would be:

       card "Megahertz XJ2288 V.34 Fax Modem"
         version "MEGAHERTZ", "XJ2288", "V.34 PCMCIA MODEM"
         bind "serial_cs"

  or using the more compact product ID codes:

  card "Megahertz XJ2288 V.34 Fax Modem"
    manfid 0x0101, 0x1234
    bind "serial_cs"

  You can use ``*'' to match strings that don't need to match exactly,
  like version numbers.  When making new config entries, be careful to
  copy the strings exactly, preserving case and blank spaces.  Also be
  sure that the config entry has the same number of strings as are
  reported in the log file.

  Beware that you can specify just about any driver for a card, but if
  you're just shooting in the dark, there is not much reason to expect
  this to be productive.  You may get lucky and find that your card is
  supported by an existing driver.  However, the most likely outcome is
  that the driver won't work, and may have unfortunate side effects like
  locking up your system.  Unlike most ordinary device drivers, which
  probe for an appropriate card, the probe for a PCMCIA device is done
  by cardmgr, and the driver itself may not do much validation before
  attempting to communicate with the device.

  After editing /etc/pcmcia/config, you can signal cardmgr to reload the
  file with:

       kill -HUP `cat /var/run/`

  If you do set up an entry for a new card, please send me a copy so
  that I can include it in the standard config file.

  6.2.  Adding support for an NE2000-compatible ethernet card

  Before you begin: this procedure will only work for simple 16-bit
  ethernet cards.  Multifunction cards (i.e., ethernet/modem combo
  cards) have an extra layer of complexity regarding how the two
  functions are integrated, and generally cannot be supported without
  obtaining some configuration information from the card vendor.  Using
  the following procedure for a multifunction card will not be

  First, see if the card is already recognized by cardmgr.  Some cards
  not listed in SUPPORTED.CARDS are actually OEM versions of cards that
  are supported.  If you find a card like this, let me know so I can add
  it to the list.

  If your card is not recognized, follow the instructions in the
  ``Configuring unrecognized cards'' section to create a config entry
  for your card, and bind the card to the pcnet_cs driver.  Restart
  cardmgr to use the updated config file.

  If the pcnet_cs driver says that it is unable to determine your card's
  hardware ethernet address, then edit your new config entry to bind the
  card to the memory card driver, memory_cs.  Restart cardmgr to use the
  new updated config file.  You will need to know your card's hardware
  ethernet address.  This address is a series of six two-digit hex
  numbers, often printed on the card itself.  If it is not printed on
  the card, you may be able to use a DOS driver to display the address.
  In any case, once you know it, run:

       dd if=/dev/mem0a count=20 | od -Ax -t x1

  and search the output for your address.  Only the even bytes are
  defined, so ignore the odd bytes in the dump.  Record the hex offset
  of the first byte of the address.  Now, edit clients/pcnet_cs.c and
  find the hw_info structure.  You'll need to create a new entry for
  your card.  The first field is the memory offset.  The next three
  fields are the first three bytes of the hardware address.  The final
  field contains some flags for specific card features; to start, try
  setting it to 0.

  After editing pcnet_cs.c, compile and install the new module.  Edit
  /etc/pcmcia/config again, and change the card binding from memory_cs
  to pcnet_cs.  Follow the instructions for reloading the config file,
  and you should be all set.  Please send me copies of your new hw_info
  and config entries.

  If you can't find your card's hardware address in the hex dump, as a
  method of last resort, it is possible to ``hard-wire'' the address
  when the pcnet_cs module is initialized.  Edit /etc/pcmcia/config.opts
  and add a hw_addr= option, like so:

       module "pcnet_cs" opts "hw_addr=0x00,0x80,0xc8,0x01,0x02,0x03"

  Substitute your own card's hardware address in the appropriate spot,
  of course.  Beware that if you've gotten this far, it is very unlikely
  that your card is genuinely NE2000 compatible.  In fact, I'm not sure
  if there are any cards that are not handled by one of the first two

  6.3.  PCMCIA floppy interface cards

  The PCMCIA floppy interface used in the Compaq Aero and a few other
  laptops is not yet supported by this package.  The snag in supporting
  the Aero floppy is that the Aero seems to use a customized PCMCIA
  controller to support DMA to the floppy.  Without knowing exactly how
  this is done, there isn't any way to implement support under Linux.

  If the floppy adapter card is present when an Aero is booted, the Aero
  BIOS will configure the card, and Linux will identify it as a normal
  floppy drive.  When the Linux PCMCIA drivers are loaded, they will
  notice that the card is already configured and attached to a Linux
  driver, and this socket will be left alone.  So, the drive can be used
  if it is present at boot time, but the card is not hot swappable.

  7.  Debugging tips and programming information

  7.1.  Submitting useful problem reports

  The best way to submit reports is to use the online pcmcia-cs forums
  or the bug tracker at SourceForge.  That way, other people can see
  current problems (and fixes or workarounds, if available).  Here are
  some things that should be included in all bug reports:

  ·  Your system brand and model.

  ·  All PCMCIA card(s) you are using.

  ·  Your Linux kernel version (i.e., ``uname -rv''), and PCMCIA driver
     version (i.e., ``cardctl -V'').

  ·  Output of 'lspci -v'

  ·  Any changes you have made to the startup files in /etc/pcmcia, or
     to the PCMCIA startup script.

  ·  All PCMCIA-related messages in your system log file.  That includes
     startup messages, and messages generated when your cards are

  All the PCMCIA modules and the cardmgr daemon send status messages to
  the system log.  These will usually end up somewhere like
  /var/log/messages or /var/log/daemon.log.  These files should be the
  first place to look when tracking down a problem.  When submitting a
  bug report, always include the relevant contents of these files.  If
  you are having trouble finding your system messages, check
  /etc/syslog.conf to see how different classes of messages are handled.

  Before submitting a bug report, please check to make sure that you are
  using an up-to-date copy of the driver package.  While it is somewhat
  gratifying to read bug reports for things I've already fixed, it isn't
  a particularly constructive use of my time.

  If you do not have web access, bug reports can be sent to me at  However, I prefer that bug reports be
  posted to the pcmcia-cs SourceForge site, so that they can be seen by

  7.2.  Interpreting kernel trap reports

  If your problem involves a kernel fault, the register dump from the
  fault is only useful if you can translate the fault address, EIP, to
  something meaningful.  Recent versions of klogd attempt to translate
  fault addresses based on the current kernel symbol map, but this may
  not work if the fault is in a module, or if the problem is severe
  enough that klogd cannot finish writing the fault information to the
  system log.

  If a fault is in the main kernel, the fault address can be looked up
  in the file.  This may be installed in / or
  /boot/  If a fault is in a module, the nm command gives the
  same information, however, the fault address has to be adjusted based
  on the module's load address.  Let's say that you have the following
  kernel fault:

       Unable to handle kernel NULL pointer dereference
       current->tss.cr3 = 014c9000, %cr3 = 014c9000
       *pde = 00000000
       Oops: 0002
       CPU:    0
       EIP:    0010:[<c2026081>]
       EFLAGS: 00010282

  The fault address is 0xc2026081.  Looking at, we see that
  this is past the end of the kernel, i.e., is in a kernel module.  To
  determine which module, check the output of ``ksyms -m | sort'':

       Address   Symbol                            Defined by
       c200d000  (35k)                             [pcmcia_core]
       c200d10c  register_ss_entry                 [pcmcia_core]
       c200d230  unregister_ss_entry               [pcmcia_core]
       c2026000  (9k)                              [3c574_cs]
       c202a000  (4k)                              [serial_cs]

  So, 0xc2026081 is in the 3c574_cs module, and is at an offset of
  0x0081 from the start of the module.  We cannot look up this offset in
  3c574_cs.o yet: when the kernel loads a module, it inserts a header at
  the module load address, so the real start of the module is offset
  from the address shown in ksyms.  The size of the header varies with
  kernel version: to find out the size for your kernel, check a module
  that exports symbols (like pcmcia_core above), and compare a symbol
  address with nm output for that symbol.  In this example,
  register_ss_entry is loaded at an offset of 0xc200d10c - 0xc200d000 =
  0x010c, while ``nm pcmcia_core.o'' shows the offset as 0x00c0, so the
  header size is 0x010c - 0x00c0 = 0x004c bytes.

  Back to 3c574_cs, our fault offset is 0x0081, and subtracting the
  0x004c header, the real module offset is 0x0035.  Now looking at ``nm
  3c574_cs.o | sort'', we see:

       0000002c d if_names
       0000002c t tc574_attach
       00000040 d mii_preamble_required
       00000041 d dev_info

  So, the fault is located in tc574_attach().

  In this example, the fault did not cause a total system lockup, so
  ksyms could be executed after the fault happened.  In other cases, you
  may have to infer the module load addresses indirectly.  The same
  sequence of events will normally load modules in the same order and at
  the same addresses.  If a fault happens when a certain card is
  inserted, get the ksyms output before inserting the card, or with a
  different card inserted.  You can also manually load the card's driver
  modules with insmod and run ksyms before inserting the card.

  For more background, see ``man insmod'', ``man ksyms'', and ``man
  klogd''.  In the kernel source tree, Documentation/oops-tracing.txt is
  also relevant.  Here are a few more kernel debugging hints:

  ·  Depending on the fault, it may also be useful to translate
     addresses in the ``Call Trace'', using the same procedure as for
     the main fault address.

  ·  To diagnose a silent lock-up, try to provoke the problem with X
     disabled, since kernel messages sent to the text console will not
     be visible under X.
  ·  If you kill klogd, most kernel messages will be echoed directly on
     the text console, which may be helpful if the problem prevents
     klogd from writing to the system log.

  ·  To cause all kernel messages to be sent to the console, for 2.2 and
     later kernels, if /proc/sys/kernel/printk exists, do:

       echo 8 > /proc/sys/kernel/printk

  ·  The key combination <RightAlt><ScrLk> prints a register dump on the
     text console.  This may work even if the system is otherwise
     completely unresponsive, and the EIP address can be interpreted as
     for a kernel fault.

  ·  For 2.2 and later kernels configured with CONFIG_MAGIC_SYSRQ
     enabled, various emergency functions are available via special
     <Alt><SysRq> key combinations, documented in
     Documentation/sysrq.txt in the kernel source tree.

  7.3.  Low level PCMCIA debugging aids

  The PCMCIA modules contain a lot of conditionally-compiled debugging
  code.  Most of this code is under control of the PCMCIA_DEBUG
  preprocessor define.  If this is undefined, debugging code will not be
  compiled.  If set to 0, the code is compiled but inactive.  Larger
  numbers specify increasing levels of verbosity.  Each module built
  with PCMCIA_DEBUG defined will have an integer parameter, pc_debug,
  that controls the verbosity of its output.  This can be adjusted when
  the module is loaded, so output can be controlled on a per-module
  basis without recompiling.

  Your default configuration for syslogd may discard kernel debugging
  messages.  To ensure that they are recorded, edit /etc/syslog.conf to
  ensure that ``kern.debug'' messages are recorded somewhere.  See ``man
  syslog.conf'' for details.

  There are a few register-level debugging tools in the debug_tools/
  subdirectory of the PCMCIA distribution.  The dump_tcic and dump_i365
  utilities generate register dumps for ISA-to-PCMCIA controllers.  In
  3.1.15 and later releases, dump_i365 is replaced by dump_exca, which
  is similar but also works for PCI-to-CardBus bridges.  Also new in
  3.1.15 for CardBus bridges is the dump_cardbus tool, which interprets
  the CardBus-specific registers.  These are all most useful if you have
  access to a datasheet for the corresponding controller chip.  The
  dump_cis utility (dump_tuples in pre-3.0.2 distributions) lists the
  contents of a card's CIS (Card Information Structure), and decodes
  most of the important bits.  And the dump_cisreg utility displays a
  card's local configuration registers.

  The memory_cs memory card driver is also sometimes useful for
  debugging problems with 16-bit PC Cards.  It can be bound to any card,
  and does not interfere with other drivers.  It can be used to directly
  access any card's attribute memory or common memory.  Similarly for
  CardBus cards, the memory_cb driver can be bound to any 32-bit card,
  to give direct access to that card's address spaces.  See the man
  pages for more information.

  7.4.  /proc/bus/pccard

  On 2.2 and later kernels, the PCMCIA package will create a tree of
  status information under /proc/bus/pccard.  Much of the information
  can only be interpreted using the data sheets for the PCMCIA host
  controller.  Its contents may depend on how the drivers were
  configured, but may include all or some of the following:

        If present, these files contain resource allocation information
        to supplement the normal kernel resource tables.  Recent
        versions of the PCMCIA system may obtain additional resource
        information from the Plug and Play BIOS if configured to do so.

        In recent releases, this lists all currently loaded PCMCIA
        client drivers.  Unlike /proc/modules, it also lists drivers
        that may be statically linked into the kernel.

        For each socket, describes that socket's host controller and its

        This contains a dump of a controller's ``ExCA'' Intel i82365sl-
        compatible register set.

        For CardBus bridges, a dump of the bridge's PCI configuration
        space, and a dump of the bridge's CardBus configuration

  7.5.  Writing Card Services drivers for new cards

  The Linux PCMCIA Programmer's Guide is the best documentation for the
  client driver interface.  The latest version is always available from in /pub/pcmcia-cs/doc, or on the web at

  For devices that are close relatives of normal ISA devices, you will
  probably be able to use parts of existing Linux drivers.  In some
  cases, the biggest stumbling block will be modifying an existing
  driver so that it can handle adding and removing devices after boot
  time.  Of the current drivers, the memory card driver is the only
  ``self-contained'' driver that does not depend on other parts of the
  Linux kernel to do most of the dirty work.

  In many cases, the largest barrier to supporting a new card type is
  obtaining technical information from the manufacturer.  It may be
  difficult to figure out who to ask, or to explain exactly what
  information is needed.  However, with a few exceptions, it is very
  difficult if not impossible to implement a driver for a card without
  technical information from the manufacturer.

  I have written a dummy driver with lots of comments that explains a
  lot of how a driver communicates with Card Services; you will find
  this in the PCMCIA source distribution in clients/dummy_cs.c.

  7.6.  Guidelines for PCMCIA client driver authors

  I have decided that it is not really feasible for me to distribute all
  PCMCIA client drivers as part of the PCMCIA package.  Each new driver
  makes the main package incrementally harder to maintain, and including
  a driver inevitably transfers some of the maintenance work from the
  driver author to me.  Instead, I will decide on a case by case basis
  whether or not to include contributed drivers, based on user demand as
  well as maintainability.  For drivers not included in the core
  package, I suggest that driver authors adopt the following scheme for
  packaging their drivers for distribution.

  Driver files should be arranged in the same directory scheme used in
  the PCMCIA source distribution, so that the driver can be unpacked on
  top of a complete PCMCIA source tree.  A driver should include source
  files (in ./modules/), a man page (in ./man/), and configuration files
  (in ./etc/).  The top level directory should also include a README

  The top-level directory should include a makefile, set up so that
  ``make -f ... all'' and ``make -f ... install'' compile the driver and
  install all appropriate files.  If this makefile is given an extension
  of .mk, then it will automatically be invoked by the top-level
  Makefile for the all and install targets.  Here is an example of how
  such a makefile could be constructed:

       # Sample Makefile for contributed client driver
       FILES = README.sample_cs \
               modules/sample_cs.c modules/sample_cs.h \
               etc/sample.conf etc/sample etc/sample.opts \
               $(MAKE) -C modules MODULES=sample_cs.o
               $(MAKE) -C modules install-modules MODULES=sample_cs.o
               $(MAKE) -C etc install-clients CLIENTS=sample
               $(MAKE) -C man install-man4 MAN4=sample_cs.4
               tar czvf sample_cs.tar.gz $(FILES)

  This makefile uses install targets defined in 2.9.10 and later
  versions of the PCMCIA package.  This makefile also includes a
  ``dist'' target for the convenience of the driver author.  You would
  probably want to add a version number to the final package filename
  (for example, sample_cs-1.5.tar.gz).  A complete distribution could
  look like:


  With this arrangement, when the contributed driver is unpacked, it
  becomes essentially part of the PCMCIA source tree.  It can make use
  of the PCMCIA header files, as well as the machinery for checking the
  user's system configuration, and automatic dependency checking, just
  like a ``normal'' client driver.

  In this example, etc/sample and etc/sample.opts would be the new
  driver's configuration scripts (if needed), and etc/sample.conf would
  contain any additions to the PCMCIA card configuration file.  Starting
  with the 3.1.6 release, cardmgr will automatically process any *.conf
  files installed in /etc/pcmcia, so installation of contributed drivers
  should no longer require hand editing configuration files.

  I will accept client drivers prepared according to this specification
  and place them in the /pub/pcmcia-cs/contrib directory on  The README in this directory will describe
  how to unpack a contributed driver.

  The client driver interface has not changed much over time, and has
  almost always preserved backwards compatibility.  A client driver will
  not normally need to be updated for minor revisions in the main
  package.  I will try to notify authors of contributed drivers of
  changes that require updates to their drivers.

  7.7.  Guidelines for Linux distribution maintainers

  If your distribution has system configuration tools that you would
  like to be PCMCIA-aware, please use the *.opts files in /etc/pcmcia
  for your ``hooks.''  These files will not be modified if a user
  compiles and installs a new release of the PCMCIA package.  If you
  modify the main configuration scripts, then a fresh install will
  silently overwrite your custom scripts and break the connection with
  your configuration tools.  Contact me if you are not sure how to write
  an appropriate option script, or if you need additional capabilities.

  It is helpful for users (and for me) if you can document how your
  distribution deviates from the PCMCIA package as described in this
  document.  In particular, please document changes to the startup
  script and configuration scripts.  If you send me the appropriate
  information, I will include it in the ``Notes about specific Linux

  When building PCMCIA for distribution, consider including contributed
  drivers that are not part of the main PCMCIA package.  For reasons of
  maintainability, I am trying to limit the core package size, by only
  adding new drivers if I think they are of particularly broad interest.
  Other drivers will be distributed separately, as described in the
  previous section.  The split between integral and separate drivers is
  somewhat arbitrary and partly historical, and should not imply a
  difference in quality.

Комментариев нет:

Отправить комментарий